Jiang Gong   研究员(自然科学)

截止2024年8月24日,累计发表SCI论文153篇。其中第一作者/通讯作者85篇,包括国际一流期刊Progress in Polymer Science(影响因子26),Advanced Materials(影响因子27.4),Advanced Energy Materials (影响因子24.4),Angewandte Chemie International Edition(影响因子16.1),Chem(影响因子19.1),Applied Catalysis B: Environmental(影响因子20.2,4篇),Chemical Engineering Journal(影响因子13.3,11篇),Jour...Detials

Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two phase systems

Release time:2024-08-25  Hits:

  • Indexed by:Journal paper
  • Document Code:2456
  • First Author:Chongrui Zhang
  • Correspondence Author:Qiang Zhao
  • Co-author:Xufei Liu,Jiang Gong
  • Journal:Nature Communications
  • Included Journals:SCI、EI
  • Discipline:Engineering
  • First-Level Discipline:Material Science and Engineering
  • Document Type:J
  • Volume:14
  • Date of Publication:2023-04-28
  • Abstract:Aqueous two-phase systems (ATPS) provide imperative interfaces and compartments in biology, but the sculpture and conversion of liquid structures to functional solids is challenging. Here, inspired by phase evolution of mussel foot proteins ATPS, we tackle this problem by designing poly(ionic liquids) capable of responsive condensation and phase-dependent curing. When mixed with poly(dimethyl diallyl ammonium chloride), the poly(ionic liquids) formed liquid condensates and ATPS, which were tuned into bicontinuous liquid phases under stirring. Selective, rapid curing of the poly(ionic liquids)-rich phase was facilitated under basic conditions (pH 11), leading to the liquid-to-gel conversion and structure sculpture, i.e., the evolution from ATPS to macroporous sponges featuring bead-and-string networks. This mechanism enabled the selective embedment of carbon nanotubes in the poly(ionic liquids)-rich phase, which showed exceptional stability in harsh conditions (10 wt% NaCl, 80 oC, 3 days) and high (2.5 kg/m2h) solar thermal desalination of concentrated salty water under 1-sun irradiation.
  • Links to published journals:https://www.nature.com/articles/s41467-023-38236-8