EN

余创

教授    博士生导师    硕士生导师

个人信息 更多+
  • 教师英文名称: Chuang Yu
  • 性别: 男
  • 在职信息: 在职
  • 所在单位: 电气与电子工程学院
  • 学历: 研究生(博士)毕业
  • 学位: 工学博士学位

其他联系方式

邮编:

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Unraveling the LiNbO3 coating layer on battery performances of lithium argyrodite-based all-solid-state batteries under different cut-off voltages

发布时间:2022-12-26
点击次数:

论文类型:
期刊论文
发表刊物:
Electrochimica Acta
收录刊物:
SCI
所属单位:
华中科技大学电气与电子工程学院
刊物所在地:
荷兰
学科门类:
工学
一级学科:
材料科学与工程
文献类型:
J
卷号:
436
页面范围:
141545-141555
关键字:
All-solid-state batteries Chlorine-rich argyrodite LiCoO2 cathode LiNbO3 coating Voltage windows
DOI码:
10.1016/j.electacta.2022.141545
发表时间:
2022-12-26
影响因子:
7.336
教研室:
电力系
摘要:
The coating layer can effectively mitigate the undesirable side effects that occur at the active material/sulfide electrolyte interface in the cathode mixture. Plenty of research has reported the coating layer effect in the typical voltage window, while the influence at different voltage windows is unclear. Herein, the degradation mechanism of the bare and LiNbO3-coated LiCoO2 electrodes in all-solid-state batteries when cycled at different cut-off voltages has been systematically investigated. The coated electrodes exhibit superior electrochemical performance than the bare electrodes at different charging/discharging rates when the upper cut-off voltage is 3.6 V, while both electrodes show fast degradation of battery performance at higher cut-off voltages (3.9 and 4.2 V). The electrochemical performances are highly dependent on the interfacial stability between the active material and solid electrolyte in the cathode mixture and the structural instability of LiCoO2 at different voltage windows. The evolution of interfacial resistances is systematically investigated in a combination with in-situ EIS, relaxation time distribution (DRT), TEM, and XPS. Structural changes of bare and coated LiCoO2 before and after cycling at different cut-off voltages are studied by XRD, TEM, and dQ/dV analysis. The clarification of complex interfaces and phase stability evolution of LiCoO2 provides a strong theoretical basis for constructing high-performance all-solid-state batteries.