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ABSTRACT
Technology Computer Aided Design (TCAD) is a crucial step in
the design and manufacturing of semiconductor devices. It
involves solving physical equations that describe the behavior of
semiconductor devices to predict various device parameters.
Traditional TCAD methods, such as finite volume and finite
element methods, discretize relevant physical equations to achieve
numerical simulations of devices, significantly burdening the
computation resources. For the first time, this paper proposes a
novel method for TCAD simulation based on Physics-Informed
Neural Networks (PINNs). We proposed multi-order differential
neural network (MDNN), an improved Radial Basis Function
Neural Network (RBFNN) model. By training MDNN, it achieves
the couple solution of the Poisson equation and drift-diffusion
equation under steady-state conditions, without the need for a
pre-existing dataset. To the best of our knowledge, this marks the
first instance of an ML-TCAD simulation that does not require
any pre-existing data. For an example of PN junction diode, this
method effectively simulates the basic physical characteristics of
the device, with a self-consistent solution error of less than 1×10-5.

1 INTRODUCTION
For the entire integrated circuit industry, Electronic Design
Automation (EDA) tools play an indispensable role. TCAD is an
essential component within the EDA toolchain, providing
irreplaceable functions in the design and optimization process of
devices. Currently, the integration of EDA and machine learning
has become a trend, with an increasing number of studies
exploring the combination of machine learning and TCAD [1-5].

These studies specifically include the use of trained Multilayer
Perceptron (MLP) models to predict device current-voltage (ID-VG)
[1,2] curves or employing Graph Neural Network (GNN) [3,4]
models to predict the spatial distribution of physical quantities
such as device’s potential and carrier density. However, all these
research achievements are based on data-driven methods. In other
words, the realization of these outcomes still relies on the
simulation results of traditional TCAD tools, such as finite
volume and finite element methods, as their prerequisite
conditions. To date, there have been no reported research
achievements that directly employ machine learning techniques to
self-consistently solve relevant physical model differential
equations (e.g., Poisson equation, drift-diffusion equation, current
continuity equation) for device simulation.

Now, let us shift our focus to the field of AI/ML for Science. It is
evident that within the past 5 to 6 years, a plethora of research
achievements have emerged that employ machine learning to
directly solve partial differential equations (PDEs) [6-11]. The
PDEs covered in these scientific publications span various areas,
including electromagnetism [8], fluid mechanics, quantum
mechanics [9], seismic wave propagation [10], and even the
spread of the COVID-19 virus [11]. The origin of all these studies
can be traced back to the introduction of Physics-Informed Neural
Networks (PINNs).

Figure 1: Schematic diagram of the PDE numerical solution
process performed by PINN.
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Figure 2: A schematic representation of the Multi-order
Differential Neural Network (MDNN) model. In the diagram,
lines with the same color indicate the same linear
transformation. Neurons with the same color in the hidden
layer represent the same type of adaptive kernel function.

PINN, proposed by Raissi et al. in 2017, is a machine learning
method for obtaining numerical solutions to differential equations.
Compared with the finite volume method and finite element
method, PINN is a brand new numerical solution paradigm [6,7].
The basic idea of PINN is to define the loss function as the
residual of the artificial neural network output with respect to the
governing differential equation, boundary conditions, and initial
conditions. Consequently, through methods such as gradient
descent, the loss function value of the neural network is
minimized during the training process. This enables the artificial
neural network to satisfy the governing differential equation,
boundary conditions, and initial conditions constraints as closely
as possible. The output that satisfies these constraints represents
the numerical approximation of the sought-after solution to the
differential equation.

Compared to traditional numerical methods such as finite
difference, finite volume, and finite element methods, PINN
offers the following advantages. First, the method does not require
complex mesh generation or the creation of matrix equations
based on mesh structure for numerical solving. Second, by using
numerical differentiation, the PINN model can output high-order
partial derivatives of the approximate solution at any position
within the domain. Third, PINN has been successfully applied to
solve high-dimensional (100-dimensional or even higher) partial
differential equations [12,13]. As a result, it holds promise for
addressing the "curse of dimensionality" problem faced by
Design-Technology Co-Optimization (DTCO) in simulating
complex structured devices [1]. Last but not least, artificial neural
networks are mathematically continuous models. Continuous
models provide more flexibility, making them easier to adapt to
complex forms of partial differential equations and more
amenable to modifications and optimizations compared to discrete
models [14]. For these reasons, our paper presents the first

exploration of using PINN for TCAD simulation, filling a gap in
this research direction.

In this paper, we introduce a Multi-order Differential Neural
Network (MDNN) model and associated simulation and
optimization algorithms for the self-consistent solution of
Poisson's equation and drift-diffusion equations under steady-state
conditions. By replacing the deep fully connected neural network
(DNN) used in traditional PINN methods with a composite
MDNN model, we obtain a novel machine learning approach for
solving coupled Poisson's equation and carrier transport
equations.

The structure of this paper is as follows: In Section 2, we provide
a detailed description of the mathematical formulation of MDNN,
the process of performing numerical simulations of PN junction
diodes using MDNN, and the accuracy improvement algorithm
based on the Residual Neural Network (Res-Net) concept. In
Section 3, we present numerical simulation results of PN junction
diodes under various conditions, the gradient descent process of
the loss function, and compare the carrier and the potential
distributions obtained through MD-PINN simulation with the
corresponding simulation results from Sentaurus TCAD. The
results demonstrate that the improved RBFNN model has the
capability to accurately simulate semiconductor devices. Finally,
Section 4 concludes the paper and provides an outlook on future
research in Machine Learning-TCAD.

2 NEURAL NETWORK AND SIMULATION
PROCESS

In this section, we will provide a detailed description of the
proposed Multi-order Differential Neural Network Model
(MDNN) and the specific process of utilizing MDNN for the
simulation of semiconductor devices.

2.1 Multi-order Differential Neural Network
Model

The Multi-order Differential Neural Network model proposed in
this paper is shown in Figure 2. MDNN is a single-hidden-layer
neural network model developed as an improvement upon the
RBFNN (Radial Basis Function Neural Network). Its distinctive
feature lies in its ability to accurately and efficiently output the
partial derivatives of a specific quantity with respect to the input
variables of the MDNN model. In the one-dimensional case,
MDNN has one input term representing spatial position and a total

of five output terms: 𝑢, 𝑢 1 , 𝑢 2 , 𝑢 3 , 𝑢 4 . Among

them 𝑢 1 , 𝑢 2 , 𝑢 3 , 𝑢 4 are the first to fourth-order partial
derivatives of 𝑢 with respect to the neural network input variable
𝑥, respectively.

Unlike traditional single-hidden-layer models such as RBFNN,
the hidden layer of the MDNN model is composed of several
groups of neurons, with each group containing five neurons with
distinct kernel functions (activation functions). For the hidden
layer, the five neurons within the same group share the same
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bandwidth parameters 𝑤 and kernel function centers b. For the
output layer, each group of neurons in the hidden layer also shares
the same weights 𝐴. Meanwhile, the biases for the output layer are
all set to zero. The only difference among these five neurons
within the same group in the hidden layer is that they each have
their own distinct adaptive kernel functions: 𝑓1 𝑡 , 𝑓2 𝑡 , 𝑓3 𝑡 ,

𝑓4 𝑡 , 𝑓5 𝑡 . In order to make the five output terms of the
MDNN model satisfy the required mathematical relationships, we
chose the mathematical forms of these adaptive kernel functions
to be as follows after extensive numerical experiments:

𝑓1 𝑡 =
𝜋 𝑡 𝑒𝑟𝑓 𝑡 +𝑒−𝑡

2

2𝑤2 (1)

𝑓2 𝑡 =
𝜋 𝑒𝑟𝑓 𝑡

2𝑤
(2)

𝑓3 𝑡 = 𝑒−𝑡
2

(3)

𝑓4 𝑡 =− 2𝑤𝑡𝑒−𝑡
2

(4)

𝑓5 𝑡 = 2𝑤2 2𝑡2 − 1 𝑒−𝑡
2

(5)

In the above equations (1)-(5), 𝑤 represents the bandwidth
parameters of the corresponding hidden layer neurons, and their
specific values will change as the neural network training process
progresses. Here, 𝑡 (𝑡 = 𝑤 𝑥 − 𝑏 ) represents the input to the
kernel function (activation function) in the hidden layer neurons,
and 𝑒𝑟𝑓 𝑡 denotes the Gaussian error function.

Additionally, the hidden layer and the output layer of the MDNN
model are not fully connected. All neurons of the same type in the
hidden layer (i.e., having the same type of adaptive kernel
function) are connected only to a specific output term in the
output layer. In other words, each output term of the neural
network implies the linear weighted sum of the output results of
all neurons of the same type in the hidden layer. As a result, we
obtain the mathematical expressions for the five output quantities

of the constructed MDNN:𝑢, 𝑢 1 , 𝑢 2 , 𝑢 3 , 𝑢 4 :

𝑢 =
𝑖=1
𝑛 𝐴𝑖∑

𝜋𝑤𝑖 𝑥−𝑏𝑖 𝑒𝑟𝑓 𝑤𝑖 𝑥−𝑏𝑖 +𝑒−𝑤𝑖
2 𝑥−𝑏𝑖

2

2𝑤𝑖
2 (6)

𝑢 1 =
𝑖=1
𝑛 𝐴𝑖∑

𝜋 𝑒𝑟𝑓 𝑤𝑖 𝑥−𝑏𝑖

2𝑤𝑖
(7)

𝑢 2 =
𝑖=1
𝑛 𝐴𝑖∑ 𝑒−𝑤𝑖

2 𝑥−𝑏𝑖
2

(8)

𝑢 3 =
𝑖=1
𝑛 𝐴𝑖∑ −2𝑤𝑖

2 𝑥 − 𝑏𝑖 𝑒
−𝑤𝑖

2 𝑥−𝑏𝑖
2

(9)

𝑢 4 =
𝑖=1
𝑛 𝐴𝑖∑ 2𝑤𝑖

2 2𝑤𝑖
2 𝑥 − 𝑏𝑖

21 𝑒−𝑤𝑖
2 𝑥−𝑏𝑖

2
(10)

In the above equations (6)-(10)𝐴𝑖,𝑤𝑖 and 𝑏𝑖 are the output layer
weights, bandwidth parameters and kernel function centers of the
𝑖-th hidden layer neuron, respectively. 𝑛 indicates the total number
of neuron groups in the entire hidden layer.

The reasons for choosing to construct the neural network model
for use in the PINN method are as follows: Firstly, through
multiple numerical experiments, we have found that compared to
deep neural networks, single-layer neural networks like RBFNN
are more likely to escape the "trap" of local optima when solving
partial differential equations, thus converging to the desired

results with fewer training iterations. Secondly, single-layer
neural networks have stronger interpretability, lower training
computational costs, and require fewer overall network
parameters. In addition, we hope to take advantage of the
excellent smoothness and fitting capabilities of Gaussian basis
functions to approximate the numerical solution of carrier
concentration distribution with steep gradients in space [15].
Finally, our design ensures the analyzability of the MDNN,
allowing for efficient and accurate calculation of its output results'
various orders of partial derivatives. This not only avoids a large
amount of numerical differentiation computation but also ensures
that numerical errors generated during the computation process
are not progressively amplified with the increase in derivative
order.

It is worth noting that the five output quantities of the neural
network model proposed in this paper have realistic physical
meanings in the subsequent device simulation and solution
process. Due to the mathematical relationships between these five
quantities, we only need to multiply them by specific constants to
represent the five physical quantities in space: potential, electric
field strength, charge density, gradient of charge density, and
divergence of charge density. The distribution of these five
physical quantities is precisely the result of interest in TCAD
simulations.

2.2 Device Simulation Process
The core problem to be solved in TCAD for semiconductor device
simulation is how to achieve self-consistent solutions for the
coupled electric field equations and carrier transport equations
[16]. Here, we choose to use the Poisson equation to describe the
spatial distribution of the potential and the drift-diffusion equation
under steady-state conditions as the carrier transport equation. The
specific mathematical forms of these two types of equations in
one-dimensional cases are described as follows:

ε
𝑑2𝜓

𝑑𝑥2
= −−− 𝜌 = 𝑞 𝑛 − 𝑝 − 𝑐 (11)

𝐷𝑝
𝑑2𝑝

𝑑𝑥2
+ 𝜇𝑝

𝑑𝑝

𝑑𝑥
∙
𝑑𝜓

𝑑𝑥
+ 𝜇𝑝𝑝

𝑑2𝜓

𝑑𝑥2
= 0 (12)

𝐷𝑛
𝑑2𝑛

𝑑𝑥2
− 𝜇𝑛

𝑑𝑛

𝑑𝑥
∙
𝑑𝜓

𝑑𝑥
− 𝜇𝑛𝑛

𝑑2𝜓

𝑑𝑥2
= 0 (13)

In the equations, 𝜓, 𝑛, 𝑝 represent the three variables to be solved:
potential, electron concentration, and hole concentration. 𝜌 is the
charge density. 𝑐 is the net charge density contribution of
impurities in the device. 𝜀 and 𝑞 represent the dielectric constant
of the device material and the elementary charge, respectively.
Finally 𝐷𝑛, 𝜇𝑛, 𝐷𝑝 and 𝜇𝑛 are the diffusion coefficient for

electrons, the mobility of electrons, the diffusion coefficient for
holes, and the mobility of holes, respectively.

The specific process of using the model combined by MDNNs
to self-consistently solve these two coupled equations is shown in
Figure 3.Given the material, doping conditions, and other physical
properties of a device, we first defined three MDNN models:
Model N, Model P, and Model C. Subsequently, we employed
the output terms of Model C, Model N, and Model P to accurately
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Figure 3: The left diagram (3.a) illustrates the schematic of the combined MDNN model used for self-consistent solution of coupled
physical equations, while the right diagram (3.b) represents the specific process of training the combined MDNN model according
to the optimization algorithm proposed in this paper to achieve device simulation.

approximate the distributions of net impurity concentration, donor
impurity concentration, and acceptor impurity concentration in the
device as initial trial solutions. Next, we fixed Model C, ensuring
that its internal parameters remained constant throughout the
subsequent processes. We then utilized the output terms of Model
N and Model P as electron and hole concentrations, respectively1.

Consequently, physical quantities such as electric potential,
electric field intensity, carrier concentration, carrier concentration
gradient, and carrier concentration divergence can be successively
represented by the output terms of the three MDNN models as
follows:

𝜓 = 𝑞 𝑢𝑛−𝑢𝑝−𝑢𝑐 𝜀 +𝐴𝑥+𝐵 (14)

𝐸 =−
𝑑𝜓

𝑑𝑥
=− 𝑞 𝑢𝑛

1 −𝑢𝑝
1 −𝑢𝑐

1 𝜀 + 𝐴 (15)

𝑛 = 𝑢𝑛
2 𝑝 = 𝑢𝑝

2 𝑐 = 𝑢𝑐
2

(16)
𝑑𝑛

𝑑𝑥
= 𝑢𝑛

3 𝑑𝑝

𝑑𝑥
= 𝑢𝑝

3
(17)

By leveraging the inherent mathematical relationships between
the five quantities obtained from the MDNN outputs, we ensure
that the Poisson equation for the electric field is always strictly
satisfied throughout the solving process. Simultaneously, to
ensure that the obtained potential distribution satisfies not only the
constraints of the control equation (11) within the domain but also
the boundary conditions, two adjustable undetermined coefficients
are introduced here. The specific values of these coefficients are
determined by the combined output of the three MDNN models at
the boundary. As a result, we have successfully reduced the

1 Of course, it is essential to perform appropriate normalization of input and output
quantities such as impurity concentration, electron concentration, hole concentration,
and device dimensions to avoid issues such as data overflow.

number of physical quantities to be determined in the TCAD
simulation process from three (electric potential, electron
concentration, and hole concentration), as required by the
currently used Newton-Raphson and Gummel methods, to two
(electron concentration and hole concentration).

The next task is to make the output distribution of Model P and
Model N satisfy the control equation (12) and control equation
(13), as well as their respective boundary conditions. Overall, we
aim to achieve this objective by utilizing the gradient-descent
method, originating from the basic idea of the PINN
(Physics-Informed Neural Network) method. However, numerical
experiments indicate that if Model P and Model N are trained
simultaneously in parallel, the model is very likely to fall into a
local optimum. The value of the loss function will be difficult to
quickly decrease to a value close to 0.

Therefore, we draw inspiration from the Gummel method and
choose to train Model N and Model P alternately [16]. During the
training process, the model being trained only needs to approach
the equation and boundary conditions that implicitly contain its
output items through gradient descent. For example, when training
Model N, the loss function only includes terms related to Equation
(13) and the electron concentration boundary conditions. When
training a particular model, the parameters of the other models
remain unchanged2. Furthermore, based on the experience of
numerical experiments, this paper chose the AdamW optimizer to
train the relevant models.

2 It is worth mentioning that the number of epochs required for continuous training
of a specific model should not be excessive, especially in the early stages of the
entire solving process. In this paper, when solving the PN junction diode example,
only 50 epochs were used for continuous training of a specific model.

(a) (b)
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Figure 4: Schematic diagram of the impurity distribution in
the PN junction diode to be simulated.

Figure 5: Schematic diagram of the changes in the loss
function value of the MDNN composite model during the
simulation of the PN junction diode under a 0.4V forward bias.
Here, n-loss and p-loss represent the errors in the electron
spatial distribution and hole spatial distribution outputs from
the MDNN composite model, respectively3.

Similar to training other neural network models, the MDNN
model may also fall into a local optimum after multiple gradient
descent processes when simulating semiconductor devices. To
address this issue, we propose the following solution [17]: replace
a single large-scale combined MDNN model with multiple
smaller-scale combined MDNN models. First, train one of the
combined models (model N, model P). Once it is found that the
value of the loss function remains unchanged after a certain
number of gradient descents, switch to a new combined model
(model N1, model P1) to solve the residual of the fixed simulation
results of the original model at that time. Then, repeat this process
continuously until the sum of the loss functions representing the
solving error reaches within the allowable error range. The effect
of this solution is shown in Figure 5. The schematic diagram of all
the training processes mentioned above can be seen in Figure 3.b.

In this way, we have achieved the self-consistent solution of the
coupled electric field equation and carrier transport equation
through the machine learning method based on the MDNN model.
As a result, we have completed the simulation of one-dimensional
semiconductor devices without the need for any prior experience
data.

3 By using lightly doped diodes, we can observe a wide range of carrier distributions
under various operating conditions, which can help to better evaluate and validate the
performance of the proposed MDNN model in simulating different scenarios.

Figure 6: Schematic diagram of the simulation results of
electron and hole distributions inside the PN junction diode.

Figure 7: Schematic diagram of the simulation results of
potential inside the PN junction diode. In the legend of Figure
6 and Figure 7, eD and hD represent electron concentration
and hole concentration, respectively; the solid line (S)
represents the results output by Sentaurus TCAD; the dashed
line (T) represents the results output by the MDNN model.
The value at the end of the legend indicates the applied bias
voltage.

3 NUMERICAL RESULTS
To verify the effectiveness of the machine learning simulation
method proposed above, the simulation result of a
one-dimensional graded PN junction diode will be presented as an
example. This PN junction diode has a size of 2 micrometers, is
made of single-crystal silicon material, and operates at a
temperature of 300 K. The donor impurities and acceptor
impurities inside the device are phosphorus and boron,
respectively, and the concentration distribution of both in space
satisfies the Gaussian distribution function. The peak
concentrations of phosphorus and boron are located at the two
electrodes on both ends of the diode. The specific distribution is
shown in Figure 4.

We used both Sentaurus TCAD and the MDNN combined model
to simulate the same device. In the MDNN combined model used
for this simulation, the hidden layers of Model N, Model P, and
Model C all have 120 groups, totaling 600 neurons. The Sentaurus
TCAD simulation of this device used a grid with 1,032 grid points.
The input dataset for the MDNN combined model simulation
consists of the coordinates of 800 uniformly distributed sample
points inside the diode. We used the AdamW optimizer with a
learning rate of 0.0015 to train the MDNN combined model. All
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code was compiled and run in the PyTorch environment of
Pycharm. The changes in the loss function value of the MDNN
composite model during the simulation process are illustrated in
Figure 5. The comparison of the simulation results output by the
MDNN combined model and Sentaurus TCAD under different
bias conditions is shown in Figure 6 and Figure 7.

As can be observed from Figure 5, the strategy of alternately
training Model N and Model P effectively leads to a steady
improvement in the accuracy of the numerical solution output by
the composite model. With the introduction of a new model to
compensate for errors the issue of the model getting trapped in
local optima is resolved, and the total error of the output result is
rapidly reduced to an extremely low level. From Figure 6 and
Figure 7, it can be clearly seen that the results obtained from our
machine learning simulation method are almost identical to the
simulation results of the traditional commercial TCAD. The
average numerical error between the two is less than 1%.
Moreover, the numerical errors of the final output of the MDNN
combined model for the Poisson equation (Equation (11)) and the
drift-diffusion equation (Equation (12) and Equation (13)) are
both less than 1 × 10-5. These results fully demonstrate the
effectiveness of our proposed MDNN model and related
algorithms in implementing TCAD simulations.

Finally, it is worth mentioning that all the neural model training
processes in this paper were carried out on a workstation with a
CPU configuration of an 8-core 12th gen Intel Core i3-12100.
Without using GPU acceleration or high-performance servers, the
time required for simulating each diode example is around 15-20
minutes, simply comparable or less than traditional TCAD
simulations.

4 CONCLUSION
In summary, by replacing the deep neural network (DNN) used in
traditional PINN methods with the combined MDNN model, this
paper has achieved machine learning-TCAD simulation without
the need for any prior experience data for the first time. The
results show that the simulation accuracy of this method in the
one-dimensional case is comparable to that of mainstream
commercial software. We believe that this method has a far
greater prospect than the current achievements.

Implementing the simulation of planar devices and
quantum-limited effects directly through machine learning is the
issue we are currently focusing on. In addition, accelerating neural
network training through hardware-software co-design [18] and
optimizing multi-model strategies are also key to making machine
learning-TCAD truly applicable to industrial practice. Here, we
hope that more colleagues will join us in exploring this new
direction.
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