陈云天

个人信息Personal Information

教授   博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:光学与电子信息学院

毕业院校:天津大学

学科:光学工程

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures

点击次数:

论文类型:期刊论文

发表刊物:Optics Express

所属单位:光电学院,国家光电研究中心

刊物所在地:美国

学科门类:工学

项目来源:自然科学基金

文献类型:J

卷号:25

期号:18

页面范围:21358

关键字:Metamaterials;,) Solar energy;, Plasmonics;,Subwavelength structures, nanostructures.

DOI码:10.1364/OE.25.021358

发表时间:2017-09-04

教研室:c716

摘要:We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green’s function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the ‘array scanning method’ we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

备注:

发布期刊链接:https://doi.org/10.1364/OE.25.021358