Huadong Gao
·Paper Publications
- [11] Huadong Gao Efficient numerical solution of dynamical Ginzburg–Landau equations under the Lorentz gauge. Communications in Computational Physics, 22(2017), 182–201..
- [12] Huadong Gao and Weiwei Sun. Optimal error analysis of Crank-Nicolson lowest-order Galerkin-mixed FEM for incompressible miscible flow in porous media, Numerical Methods for Partial Differential Equations, (36)2020, 1773–1789, http://dx.doi.org/10.1002/num.22503..
- [13] Huadong Gao, Lili Ju, Xiao Li and Ravindra Duddu, A space-time adaptive finite element method with exponential time integrator for the phase field model of pitting corrosion, Journal of Computational Physics, accepted..
- [14] Huadong Gao, Optimal error estimates of a linearized backward Euler Galerkin FEM for the Landau–Lifshitz equation. SIAM Journal on Numerical Analysis. 52 (2014), 2574–2593..
- [15] Huadong Gao, Weiwei Sun, Chengda Wu.Huadong Gao.Huadong Gao, Weiwei Sun, Chengda Wu. Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations, IMA Journal of Numerical Analysis, 41 (2021), no. 4, 3175–3200..
- [16] Huadong Gao, Lili Ju, Wen Xie. A linearized gauge invariant numerical method for the time-dependent Ginzburg–Landau equations, Journal of Scientific Computing, 80(2019), pp. 1083-1115..
- [17] Huadong Gao, Weiwei Sun. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg–Landau equations of superconductivity. Journal of Computational Physics. 294 (2015), 329–345..
- [18] Rong An, Huadong Gao and Weiwei Sun, Optimal Error Analysis of Euler and Crank--Nicolson Projection Finite Difference Schemes for Landau--Lifshitz Equation, SIAM J. Numer. Anal., (59)2021, 1639–1662..
- [19] Huadong Gao, Unconditional optimal error estimates of BDF–Galerkin FEMs for nonlinear thermistor equations. Journal of Scientific Computing. 66 (2016), 504–527..
- [20] Buyang Li, Huadong Gao, Weiwei Sun. Unconditionally optimal error estimates of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM Journal on Numerical Analysis. 52 (2014), 933–954..