个人信息
Personal information
教授 博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:材料科学与工程学院
学历:研究生(博士)毕业
学位:理学博士学位
毕业院校:北京大学
学科:材料化学物理化学
材料物理与化学
曾获荣誉:
2023 斯坦福大学全球前2%顶尖科学家榜单
2023 Chem. Commun.期刊Presentation Prize
2023 Sci. China Chem.期刊新锐科学家
2022 英国皇家化学会会士
2021 国家自然科学基金委“优秀青年科学基金”(结题优秀)
2017 华中科技大学优秀教师班主任
2010 北京大学优秀博士论文
论文类型:Research Article
第一作者:Li,Shenzhou
通讯作者:Wang,Guoxiong,Wang,Yang-Gang,Li,Qing
合写作者:Huang,Yunhui,Liu,Xuan,Liang,Jiashun,Lin,Zijie,Lv,Houfu,Wang,Gang
发表刊物:Journal of the American Chemical Society
所属单位:华中科技大学
刊物所在地:美国
文献类型:Article
卷号:146
期号:26
页面范围:17659-17668
ISSN号:0002-7863
关键字:Alloys, Catalysts, Energy, Metals, Platinum
DOI码:10.1021/jacs.4c00618
发表时间:2024-06-21
影响因子:14.4
摘要:Reactive metal–support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt–1 in half-cell and a peak power density of 187.9 mW mgPt–1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.