EN

李箐

教授    博士生导师    硕士生导师

个人信息 更多+
  • 教师英文名称: Qing Li
  • 性别: 男
  • 在职信息: 在职
  • 所在单位: 材料科学与工程学院
  • 学历: 研究生(博士)毕业
  • 学位: 理学博士学位

其他联系方式

邮编:

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Constructing Gradient Orbital Coupling to Induce Reactive Metal–Support Interaction in Pt-Carbide Electrocatalysts for Efficient Methanol Oxidation

发布时间:2024-12-29
点击次数:
论文类型:
Research Article
第一作者:
Li,Shenzhou
通讯作者:
Wang,Guoxiong,Wang,Yang-Gang,Li,Qing
合写作者:
Huang,Yunhui,Liu,Xuan,Liang,Jiashun,Lin,Zijie,Lv,Houfu,Wang,Gang
发表刊物:
Journal of the American Chemical Society
所属单位:
华中科技大学
刊物所在地:
美国
文献类型:
Article
卷号:
146
期号:
26
页面范围:
17659-17668
ISSN号:
0002-7863
关键字:
Alloys, Catalysts, Energy, Metals, Platinum
DOI码:
10.1021/jacs.4c00618
发表时间:
2024-06-21
影响因子:
14.4
摘要:
Reactive metal–support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt–1 in half-cell and a peak power density of 187.9 mW mgPt–1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.