个人信息
Personal information
教授 博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:材料科学与工程学院
学历:研究生(博士)毕业
学位:理学博士学位
毕业院校:北京大学
学科:材料化学物理化学
材料物理与化学
曾获荣誉:
2023 斯坦福大学全球前2%顶尖科学家榜单
2023 Chem. Commun.期刊Presentation Prize
2023 Sci. China Chem.期刊新锐科学家
2022 英国皇家化学会会士
2021 国家自然科学基金委“优秀青年科学基金”(结题优秀)
2017 华中科技大学优秀教师班主任
2010 北京大学优秀博士论文
论文类型:Research Article
第一作者:Lin,Zijie
通讯作者:Li,Qing
合写作者:Elbaz,Lior,Huang,Yunhui,Hsing-Lin,Wang,Tanyuan,Lu,Gang,Shi,Hao,Mao,Jialun,Liu,Xuan,Li,Shenzhou,Xia,Yu,Sathishkumar,Nadaraj
发表刊物:Angewandte Chemie International Edition
所属单位:华中科技大学
刊物所在地:德国
文献类型:Article
卷号:63
期号:26
页面范围:e202400751
ISSN号:1521-3773
关键字:Oxygen Reduction Reaction; Zirconia; Reactive Metal-Support Interaction; Intermetallics; Fuel Cells
DOI码:10.1002/anie.202400751
发表时间:2024-04-18
影响因子:16.1
摘要:Developing efficient and anti-corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal-support interaction (RMSI) as ORR catalysts, using Ni-doped cubic ZrO2 (Ni/ZrO2) supported L10−PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10−PtNi−Ni/ZrO2−RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half-cell and exceptional PEMFC performance (MA=0.76 A mgPt−1 at 0.9 V, peak power density=1.52/0.92 W cm−2 in H2−O2/−air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt-based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10−PtNi−Ni/ZrO2−RMSI requires a lower energetic barrier for ORR than L10−PtNi−Ni/ZrO2 (direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10−PtNi−Ni/ZrO2−RMSI compared to L10−PtNi−C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.