EN

李箐

教授    博士生导师    硕士生导师

个人信息 更多+
  • 教师英文名称: Qing Li
  • 性别: 男
  • 在职信息: 在职
  • 所在单位: 材料科学与工程学院
  • 学历: 研究生(博士)毕业
  • 学位: 理学博士学位

其他联系方式

邮编:

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Introducing Electron Buffers into Intermetallic Pt Alloys against Surface Polarization for High-Performing Fuel Cells

发布时间:2024-12-29
点击次数:
论文类型:
Research Article
第一作者:
Liu,Xuan
通讯作者:
Li,Qing
合写作者:
Elbaz,Lior,Huang,Yunhui,Cai,Zhao,Su,Dong,Zhang,Siyang,Li,Shenzhou,Liang,Jiashun,Wang,Yuhan
发表刊物:
Journal of the American Chemical Society
所属单位:
华中科技大学
刊物所在地:
美国
文献类型:
Article
卷号:
146
期号:
3
页面范围:
2033-2042
ISSN号:
0002-7863
关键字:
Catalysts; Lattices; Platinum; Polarization; Redox reactions
DOI码:
10.1021/jacs.3c10681
发表时间:
2024-01-11
影响因子:
14.4
摘要:
Surface polarization under harsh electrochemical environments usually puts catalysts in a thermodynamically unstable state, which strictly hampers the thermodynamic stability of Pt-based catalysts in high-performance fuel cells. Here, we report a strategy by introducing electron buffers (variable-valence metals, M = Ti, V, Cr, and Nb) into intermetallic Pt alloy nanoparticle catalysts to suppress the surface polarization of Pt shells using the structurally ordered L10-M-PtFe as a proof of concept. Operando X-ray absorption spectra analysis suggests that with the potential increase, electron buffers, especially Cr, could facilitate an electron flow to form a electron-enriched Pt shell and thus weaken the surface polarization and tensile Pt strain. The best-performing L10-Cr-PtFe/C catalyst delivers superb oxygen reduction reaction (ORR) activity (mass activity = 1.41/1.02 A mgPt–1 at 0.9 V, rated power density = 14.0/9.2 W mgPt–1 in H2-air under a total Pt loading of 0.075/0.125 mgPt cm–2, respectively) and stability (20 mV voltage loss at 0.8 A cm–2 after 60,000 cycles of accelerated durability test) in a fuel cell cathode, representing one of the best reported ORR catalysts. Density functional theory calculations reveal that the optimized surface strain by introducing Cr on L10-PtFe/C accounts for the enhanced ORR activity, and the durability enhancement stems from the charge transfer contribution of Cr to the Pt shells and the increased kinetic energy barrier for Pt dissolution/Fe diffusion.