李箐

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:材料科学与工程学院

学历:研究生(博士)毕业

学位:理学博士学位

毕业院校:北京大学

学科:材料化学
物理化学
材料物理与化学
曾获荣誉:
2023    斯坦福大学全球前2%顶尖科学家榜单
2023    Chem. Commun.期刊Presentation Prize
2023    Sci. China Chem.期刊新锐科学家
2022    英国皇家化学会会士
2021    国家自然科学基金委“优秀青年科学基金”(结题优秀)
2017    华中科技大学优秀教师班主任
2010    北京大学优秀博士论文

Low-Coordination Trimetallic PtFeCo Nanosaws for Practical Fuel Cells
发布时间:2024-12-29  点击次数:

论文类型:Research Article
第一作者:Liang, Jiashun
通讯作者:Huang,Xiaoqing,Huang,Bolong,Bu,Lingzheng,Li,Qing
合写作者:Zhou,Xiaochun,Ma,Yanhang,Zhan,Changhong,Sun,Mingzi,Huang,Ju,Ning,Fandi
发表刊物:Advanced Materials
所属单位:华中科技大学
刊物所在地:美国
文献类型:Article
卷号:35
期号:11
页面范围:2208672
ISSN号:1521-4095
关键字:Fuel Cells; Low Coordination; Membrane Electrode Assembly; Nanosaws; Oxygen Reduction Reaction
DOI码:10.1002/adma.202208672
发表时间:2022-12-27
影响因子:27.4
摘要:Developing high-performance catalysts for fuel cell catalysis is the most critical and challenging step for the commercialization of fuel cell technology. Here 1D trimetallic platinum–iron–cobalt nanosaws (Pt3FeCo NSs) with low-coordination features are designed as efficient bifunctional electrocatalysts for practical fuel cell catalysis. The oxygen reduction reaction (ORR) activity of Pt3FeCo NSs (10.62 mA cm−2 and 4.66 A mg−1Pt at 0.90 V) is more than 25-folds higher than that of the commercial Pt/C, even after 30 000 voltage cycles. Density functional theory calculations reveal that the strong inter-d-orbital electron transfer minimizes the ORR barrier with higher selectivity at robust valence states. The volcano correlation between the intrinsic structure featured with low-coordination Pt-sites and corresponding electronic activities is discovered, which guarantees high ORR activities. The Pt3FeCo NSs located in the membrane electrode assembly (MEA) also achieve very high peak power density (1800.6 mW cm−2) and competitive specific/mass activities (1.79 mA cm−2 and 0.79 A mg−1Pt at 0.90 ViR-free cell voltage) as well as a long-term lifetime in specific H2O2 medium for proton-exchange-membrane fuel cells, ranking top electrocatalysts reported to date for MEA. This work represents a class of multimetallic Pt-based nanocatalysts for practical fuel cells and beyond.