童浩

个人信息

Personal information

教授     博士生导师    

所在单位:集成电路学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:华中科技大学

学科:微电子学与固体电子学
曾获荣誉:
2024    华中科技大学青年五四奖章
2022    华为奥林帕斯先锋奖
2020    湖北省技术发明一等奖(排名第2)
2013    湖北省年度“十大科技事件”
2013    湖北省优秀博士学位论文
2014    湖北省优秀学士学位论文指导教师
2015    华中科技大学教师教学竞赛二等奖
2017    华中科技大学光学与电子信息学院“我最喜爱的教师班主任“
2020    华中科技大学光学与电子信息学院突出贡献一等奖

An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
发布时间:2023-08-21  点击次数:

论文类型:期刊论文
第一作者:胡庆
通讯作者:缪向水,徐明,童浩
合写作者:何毓辉,黄恩铭,王伦,董博义
发表刊物:Chinese Physics B
所属单位:华中科技大学
学科门类:工学
一级学科:电子科学与技术
文献类型:J
卷号:29
期号:7
页面范围:070701
关键字:superlattice-like, phase-change material, artificial synapse, low-power consumption
DOI码:10.1088/1674-1056/ab892a
发表时间:4388-08-01
摘要:Phase-change material (PCM) is generating widespread interest as a new candidate for artificial synapses in bio-inspired computer systems. However, the amorphization process of PCM devices tends to be abrupt, unlike continuous synaptic depression. The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications. Here, we fabricate a GeTe/Sb 2 Te 3 superlattice-like PCM device which allows a progressive RESET process. Our devices feature low-power consumption operation and potential high-density integration, which can effectively simulate biological synaptic characteristics. The programming energy can be further reduced by properly selecting the resistance range and operating method. The fabricated devices are implemented in both artificial neural networks (ANN) and convolutional neural network (CNN) simulations, demonstrating high accuracy in brain-like pattern recognition.
发布期刊链接:https://iopscience.iop.org/article/10.1088/1674-1056/ab892a