魏青松

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:材料科学与工程学院

学历:研究生(博士)毕业

学位:博士学位

毕业院校:华中科技大学

学科:材料加工工程
学术荣誉:
2016    华中学者
曾获荣誉:
2017    华中科技大学学术前沿青年团队负责人
2017    黄鹤英才“专项”计划
2016    江苏省双创人才
2016    华中科技大学师德三育人奖

Effect of sodium silicate solution combined yttrium oxide stabilized zirconia nanopowders on the properties of alumina ceramics fabricated by binder jetting additive manufacturing
发布时间:2024-06-09  点击次数:

发表刊物:Journal of Materials Processing Technology
收录刊物:SCI
DOI码:10.1016/j.jmatprotec.2024.118454
发表时间:2024-05-22
摘要:Binder jetting additive manufacturing (BJAM), a combination of liquid binder and solid powders, was widely utilized to fabricate complex–structured alumina (Al2O3) ceramic cores. However, the high porosity, high brittleness and low mechanical strength of Al2O3 ceramics generally limit their industrial applications. To balance the contradiction between porosity and bending strength and improve the fracture toughness of Al2O3 ceramic core, sodium silicate (Na2O·3.2SiO2) solution and 5 mol% yttrium oxide stabilized zirconia (5YSZ) nanopowders were selected as densifier and toughening phase in this study. By means of the vacuum infiltration and sintering process, the effects of Na2O·3.2SiO2 contents, sintering temperatures and 5YSZ amounts on porosity, bending strength, and fracture toughness of Al2O3 ceramic were systematically investigated. Results show that the porosity and fracture stress of Al2O3 infiltrated with 30 wt% Na2O·3.2SiO2 solution sintered at 1550 ℃ reached 21.4±1.1% and about 52.7 MPa, respectively. When the amounts of 5YSZ in 30 wt% Na2O·3.2SiO2 solution were increased from 0 wt% to 6 wt% and the sintering temperatures were varied from 1400 ℃ to 1550 ℃, the fracture toughness of Al2O3 ceramic gradually enhanced to the maximum value of 2.8185±0.071 MPa/m1/2 obtained at 4 wt% 5YSZ and 1550 ℃, which was increased by 87.44% compared with the infiltrated sample without 5YSZ. Therefore, using BJAM technology to fabricate a strong–tough Al2O3 ceramic cores for the turbine blades casting could realize short process and efficient preparation of the ceramic cores, which had a great theoretical foundation and application potential in the casting field.
发布期刊链接:https://www.sciencedirect.com/science/article/abs/pii/S0924013624001729?via%3Dihub