魏青松

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:材料科学与工程学院

学历:研究生(博士)毕业

学位:博士学位

毕业院校:华中科技大学

学科:材料加工工程
学术荣誉:
2016    华中学者
曾获荣誉:
2017    华中科技大学学术前沿青年团队负责人
2017    黄鹤英才“专项”计划
2016    江苏省双创人才
2016    华中科技大学师德三育人奖

3D printing of a titanium-tantalum Gyroid scaffold with superb elastic admissible strain, bioactivity and in-situ bone regeneration capability
发布时间:2021-09-10  点击次数:

论文类型:期刊论文
发表刊物:Additive Manufacturing
收录刊物:SCI
卷号:47
期号:3
发表时间:2021-08-01
摘要:The simultaneous achievement of admirable mechanical compatibility and osteoinduction in metallic implants can avoid stress shielding and facilitate osseointegration and osteogenesis. Herein, we reported a titanium-tantalum (Ti-Ta) Gyroid scaffold in-situ fabricated with selective laser melting (SLM), a powder-bed-fusion three-dimensional (3D) printing process, enabling superb elastic admissible strain (EAS), bioactivity and in-situ bone regeneration capability. The printed scaffold with 90% porosity exhibited a good combination of low elastic modulus (1.8 GPa) and high compressive yield strength (55.5 MPa), resulting in a superb EAS (3.03%) that is suitable for the reconstruction of cancellous bone. The mechanisms of the high EAS were ascribed to the formation of β(Ti, Ta) solid solution, ultrafine β grains accompanying with nanocrystalline α' grains, and the existence of dislocations and stacking faults. Bone-like apatite was spontaneously induced on the surface of the printed Ti-Ta alloy due to the generation of a self-passivating Ta2O5 film, indicating a good biomineralization ability. Compared to pure Ti, the printed Ti-Ta alloy exhibited an enhanced expression of vinculin, earlier cell extension, increased nuclei density, better cell proliferation, and the up-regulated expression of osteogenesis genes. Animal studies further validated that the printed Ti-Ta scaffold was capable to reinforce bone integration and accelerate bone regeneration. These findings provided a promising strategy for treating bone defects through 3D printing of metallic scaffolds.