肖后秀

个人信息Personal Information

博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:国家脉冲强磁场科学中心

学历:研究生(博士)毕业

学位:博士学位

毕业院校:华中科技大学

学科:电磁场与微波技术
电力电子与电力传动
电机与电器

其他联系方式Other Contact Information

邮编 :

邮箱 :

个人简介Personal Profile

       肖后秀,华中科技大学电气与电子工程学院 教授、博士生导师,强磁场技术研究所所长,脉冲强磁场国家重大科技基础设施优化提升项目太赫兹谱实验测试系统负责人,近5年以第一作者/通讯作者发表SCI论文20余篇,主持/参与国家自然科学基金、国家重点研发计划课题等项目10余项,是2019年国家科技进步一等奖、2018年湖北省科技进步特等获奖者之一。主要研究方向:大功率太赫兹技术、脉冲强磁场技术及应用、电力电子技术

        主要从事脉冲强磁场技术及其应用研究。针对超高脉冲磁体频繁失效问题和脉冲磁体现有弹塑性理论的局限性通过实验发现了脉冲磁体中结构屈曲问题,并原创性地建立了脉冲磁体结构屈曲稳定性理论,为脉冲磁体技术发展和100T脉冲磁场的实现奠定了坚实基础。在脉冲磁体波形控制方面,提出了基于大功率半导体开关旁路技术实现高稳定度平顶脉冲磁体方法,成功实现了25T /200 ms 平顶脉冲磁场,磁场稳定度达到0.01%。在强磁场技术应用方面,结合脉冲强磁场技术优势和当前太赫兹源的发展需求,作为负责人带领团队开发了回旋管理论设计软件,建立了800GH回旋管太赫兹源综合实验研究平台,项目阶得了阶段性成果,于2020年10月成功实现了229~803GHz的太赫兹辐射,功率比常规商用太赫兹波源提高了三个量级,主要技术参数处于国内领先行列和国际先进水平. 

主讲本科课程:《电子技术》、《电路理论》。


以第一作者或通讯作者发表的主要论文:

  1. H. Xiao et al., “Comprehensive analyses of buckling and stress failure of high-field pulsed magnets under biaxial Lorentz force body load,” Thin-Walled Structures, vol. 183, p. 110341, Feb. 2023, doi: 10.1016/j.tws.2022.110341.

  2. H. Xiao, R. Tang, Z. Yin, Z. Qiu, S. Cheng, and L. Li, “Internal Buckling Analysis of High Field Pulsed Magnets,” IEEE Trans. Appl. Supercond., pp. 1–5, 2023, doi: 10.1109/TASC.2023.3348092.

  3. R. Tang, H. Xiao, X. Chen, and Y. Huang, “A Hybrid Optimization Method Based on Simplified Mechanical Model for High-Stress Magnets,” IEEE Trans. Magn., pp. 1–1, 2023, doi: 10.1109/TMAG.2023.3329414.

  4. Y. Huang, H. Xiao, X. Chen, Z. Wang, and Z. Qiu, “Assessing Surface Roughness Effect in Gyrotrons With the Gradient Conductivity Model,” IEEE Trans. Electron Devices, vol. 70, no. 6, pp. 2702–2706, Jun. 2023, doi: 10.1109/TED.2022.3206263.

  5. Y. Huang, X. Chen, and H. Xiao, “Effect of Beam Velocity Spread With Spatial Variation on Mode Excitation in Gyrotrons,” IEEE Trans. Plasma Sci., pp. 1–5, 2023, doi: 10.1109/TPS.2023.3323329.

  6. X. Chen, H. Xiao, Y. Huang, and X. Han, “Linear and Saturated Behaviors of Gyrotron Oscillator With a Misaligned Electron Beam,” IEEE Trans. Electron Devices, pp. 1–8, 2023, doi: 10.1109/TED.2023.3322666.

  7. X. Chen et al., “Experimental Study on Continuous Frequency Tuning of a Second-Harmonic 800-GHz Gyrotron,” IEEE Trans. Electron Devices, pp. 1–5, 2023, doi: 10.1109/TED.2023.3329793.

  8. 肖后秀 and 黄煜, “超高场脉冲磁体失效及结构屈曲研究,” 电工技术学报, vol. 37, no. 19, pp. 5067–5073, 2022, doi: 10.19595/j.cnki.1000-6753.tces.211714.

  9. H. Xiao et al., “Failure Analysis of the 100 T Pulsed Magnet at the WHMFC,” IEEE Trans. on Ind. Applicat., vol. 58, no. 5, pp. 6145–6151, Sep. 2022, doi: 10.1109/TIA.2022.3187058.

  10. H. Xiao et al., “Development and Initial Experimental Results of a Terahertz Pulsed Field Gyrotron in the WHMFC,” IEEE Trans. Electron Devices, vol. 69, no. 9, pp. 5242–5247, Sep. 2022, doi: 10.1109/TED.2022.3192219.

  11. X. Chen et al., “Mode Excitation in Gyrotrons With Triode-Type Electron Guns,” IEEE Transactions on Electron Devices, vol. 69, no. 2, pp. 785–791, 2022, doi: 10.1109/TED.2021.3137760.

  12. X. Chen et al., “Effect of Electron Beam Properties on a Second Harmonic Gyrotron,” IEEE Transactions on Electron Devices, vol. 69, no. 10, pp. 5871–5878, Oct. 2022, doi: 10.1109/TED.2022.3201066.

  13. H. Xiao et al., “Influence of Misalignment on the Behavior of Electron Beam of an 800 GHz Gyrotron,” IEEE Electron Device Letters, vol. 42, no. 11, pp. 1662–1665, Nov. 2021, doi: 10.1109/LED.2021.3116621.

  14. X. Chen et al., “Shadowing of the operating mode by sidebands in gyrotrons with diode-type electron guns,” Physics of Plasmas, vol. 28, no. 1, p. 013110, Jan. 2021, doi: 10.1063/5.0036054.

  15. X. Chen, J. Liao, H. Xiao, X. Han, T. Peng, and L. Li, “Dynamic electromagnetic buckling analysis of pulsed magnets,” Thin-Walled Structures, vol. 162, p. 107621, May 2021, doi: 10.1016/j.tws.2021.107621.

  16. H. Xiao et al., “Buckling analysis of pulsed magnets under high Lorentz force,” Thin-Walled Structures, vol. 148, p. 106604, Mar. 2020, doi: 10.1016/j.tws.2020.106604.

  17. P. Wang et al., “Investigation of the Alignment Method for High-Frequency Gyrotrons,” IEEE Trans. THz Sci. Technol., vol. 10, no. 5, pp. 460–465, Sep. 2020, doi: 10.1109/TTHZ.2020.2979116.

  18. P. Wang et al., “Optimization Design of Flat-Top Pulsed Magnet for an 800-GHz Second Harmonic Gyrotron,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1234–1239, Mar. 2020, doi: 10.1109/TED.2020.2966584.

  19. P. Wang et al., “Numerical and Experimental Verification of a Pulsed Magnet for an 800-GHz Gyrotron,” IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4460–4466, Oct. 2020, doi: 10.1109/TED.2020.3018098.

  20. P. Wang, X. Chen, H. Xiao, O. Dumbrajs, X. Qi, and L. Li, “GYROCOMPU: Toolbox Designed for the Analysis of Gyrotron Resonators,” IEEE Trans. Plasma Sci., vol. 48, no. 9, pp. 3007–3016, Sep. 2020, doi: 10.1109/TPS.2020.3013299.

  21. X. Qi et al., “A broad range frequency measurement method for continuous and pulsed THz waves,” Review of Scientific Instruments, vol. 91, no. 1, p. 014710, Jan. 2020, doi: 10.1063/1.5120592.

  22. T. Peng et al., “Study of the Fatigue Behavior of the Unidirectional Zylon/epoxy Composite Used in Pulsed Magnets,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–5, Jun. 2020, doi: 10.1109/TASC.2020.2976946.

  23. L. Deng, P. Wang, X. Li, H. Xiao, and T. Peng, “Investigation on the Parasitic Capacitance of High Frequency and High Voltage Transformers of Multi-Section Windings,” IEEE Access, vol. 8, pp. 14065–14073, 2020, doi: 10.1109/ACCESS.2020.2966496.

  24. X. Chen, H. Xiao, X. Li, J. Liao, and T. Peng, “A Modified Mechanical Model for the Optimization of High Field Solenoid Magnets,” IEEE Access, pp. 1–1, 2020, doi: 10.1109/ACCESS.2020.2985574.

  25. P. Wang, H. Xiao, L. Li, and O. Dumbrajs, “Functional Analysis Method for Nonlinear Theory of Gyrotrons,” IEEE Trans. Plasma Sci., vol. 47, no. 7, pp. 3141–3147, Jul. 2019, doi: 10.1109/TPS.2019.2917040.

  26. J. Wang, Y. Zhang, H. Xiao, L. Li, H. Kou, and J. Li, “A novel strategy for enhancing mechanical performance of Al0.5CoCrFeNi high-entropy alloy via high magnetic field,” Materials Letters, vol. 240, pp. 250–252, Apr. 2019, doi: 10.1016/j.matlet.2018.12.127.

  27. X. Qi, H. Xiao, T. Peng, X. Han, and L. Li, “Predicting the failure of pulsed magnets,” Review of Scientific Instruments, vol. 89, no. 12, p. 124705, Dec. 2018, doi: 10.1063/1.5051385.

  28. H. Xiao, T. Peng, and L. Li, “Detecting and Positioning the Insulation Failure of Pulsed Magnets,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 1–3, Jun. 2014, doi: 10.1109/TASC.2013.2285172.

  29. H. Xiao et al., “Development of a High-Stability Flat-Top Pulsed Magnetic Field Facility,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4532–4537, Sep. 2014, doi: 10.1109/TPEL.2013.2285125.

  30. H. Xiao, L. Li, H. Ding, T. Peng, and Y. Pan, “Study on a Highly Stabilized Pulsed Power Supply for High Magnetic Fields,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3817–3822, Dec. 2011, doi: 10.1109/TPEL.2009.2039954.

  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
    暂无内容
    暂无内容