YANG LI MING

·Personal Information

Current position: 英文主页 >Personal Information

欢迎来到:AI for Science、数据驱动研究范式创新、计算材料学和材料基因研究组



团队负责人:杨利明,男,华中科技大学化学与化工学院,研究员(正高级)博士生导师。2008年7月获吉林大学/博士学位(专业:物理化学),2008年9月-2015年12月,先后在挪威奥斯陆大学(导师:Mats Tilset教授)、西班牙国际物理中心(导师:Aitor Bergera教授)、美国佐治亚大学(导师:世界著名化学家Paul von Ragué Schleyer院士)、麻省理工学院(导师:李巨教授/欧洲科学院院士/APS Fellow/MRS Fellow/AAAS Fellow/MMMS Fellow)、韩国科学技术研究院、德国不莱梅大学(导师:计算材料研究中心主任Thomas Frauenheim教授)、雅各布大学(导师:Thomas Heine教授/欧洲科学院院士/英国皇家化学会会士)、洪堡大学(导师:Claudia Draxl教授/APS Fellow/Max-Planck Fellow/Einstein Professor)从事博士后和访问研究。2016年2月加入华中科技大学/化学与化工学院,开展独立研究工作,包括:开发各种方法、数据库、平台框架和推动各方面应用、指导实验落地,。


主要研究领域包括:人工智能、机器学习、数据库构建、高通量筛选、理论与计算化学、计算材料学、多尺度材料模拟、计算凝聚态物理;目前课题组围绕AI for Science这个主题,着力解决新材料、能源、催化和可持续领域的关键问题综合运用人工智能机器学习)、第一性原理计算、分子动力学模拟、机器学习势函数等方法和工具在新材料设计、筛选、性质预测、调控、优化、阐释微观机理、探索新型反应机理、揭示构效关系、以及在能源、催化、可持续等领域的潜在应用等方面开展系统深入的研究工作。研究的新材料体系包括:光伏材料、光电材料、热电材料、半导体、钙钛矿、高熵合金、无序合金、光/电催化剂、光/电催化反应(NRR, CRR, ORR, OER, HER, etc)和重要的工业催化过程。取得了一系列突出的研究成果,迄今在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater.等国际著名SCI刊物上发表论文120多篇,论文被引用5300多次,H-因子40,获批软件著作权5项,相关研究工作被多家媒体作为新闻、科研亮点、封面文章和前沿文章报道。其中2019年预测的铝硼纳米结构AlB6(发表在JACS上 https://pubs.acs.org/doi/10.1021/jacs.8b13075 被Chemical & Engineering News (C&EN)作为亮点报告

https://cen.acs.org/materials/2-d-materials/Borophene-impressive-electronic-physical-properties/97/i6 被国家自然科学基金委员会官方网站作为亮点专题报道http://www.nsfc.gov.cn/publish/portal0/tab434/info76312.htm 并激发了后续大量的跟踪研究)

2015年预测的二维平面超配位材料Cu2Si单层(发表在JACS上 https://pubs.acs.org/doi/abs/10.1021%2Fja513209c 被选为Spotlights https://pubs.acs.org/doi/abs/10.1021/jacs.5b01896)于2017年在Cu(111)表面上被实验成功制备出来(发表在Nat.Common.上 https://www.nature.com/articles/s41467-017-01108-z),后续进一步的实验制备包括在Si(111)表面上(发表在2019 Phys. Rev. Materials 3, 044004. https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.044004)并激发了后续大量的跟踪研究。2015年预测的二维六方密堆积的金单层(https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp04222d#!divAbstract)于2019年被实验成功制备出来(https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b01494),这些成功预测的例子充分证明多尺度计算模拟对于实验合成/制备先进功能材料具有重要的指导意义。


杨利明博士于2014年入选德国Hanse-Wissenschafts-Kolleg (HWK), Institute for Advanced Study高级研究所的Fellow,2016年当选全国材料新技术发展研究会常务理事,2017年入选楚天学者,2019年入选华中卓越学者,2021年入选2021 Emerging Investigators in Crystal Growth & Design https://axial.acs.org/2021/08/24/2021-emerging-investigators-in-crystal-growth-design/?utm_source=pubs_content_marketing&utm_medium=email&utm_campaign=PUBS_0921_JHS_axialnewsletter0921&src=PUBS_0921_JHS_axialnewsletter0921&ref=pubs_content_marketing_email_PUBS_0921_JHS_axialnewsletter0921


教学课程:主讲本科生《化学信息学》、全校博士生精品课程《先进功能材料/计算材料学》


招生专业:物理化学(含化学物理),无机化学。背景:化学、材料、物理、数学、计算机、能源、催化、可持续等方向均可。


主要的学术兼职包括:美国化学会会员,英国皇家化学会会员,多个期刊杂志的编委/客座编辑,应邀为Nat. Mater., Nat. Catal., Nat. Nanotechnol., Nat. Energy, Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Adv. Funct. Mater., Adv. Energy Mater., Nano Lett., ACS Nano, Acc. Chem. Res., Energy Environ. Mater., Energy Fuels, ACS Appl. Mater. Interfaces, Nanoscale, Chem. Commun., J. Phys. Chem. Lett., Int. J. Hydrogen Energy, J. Mater. Chem. A, J. Mater. Chem. C等80多种国际著名期刊杂志的专业审稿人,受邀40多个国际会议邀请报告、分会主席、大会主席。


1)作为《材料信息学》客座编辑组织专刊:数据驱动的量子材料设计和模拟

Topic: Data-driven Modeling and Design of Quantum Functional Materials

A Special Issue of Journal of Materials Informatics

ISSN 2770-372X (Online)

URL: https://jmijournal.com/journal/special_detail/1236

https://mp.weixin.qq.com/s/4SaR9dbiabPaBHP7eOvkwQ


2)作为大会主席成功组织“2023数据驱动的高熵非晶材料大会”2023年12月8-10日,海南三亚,首次设立2个新方向分会场,在业内引起广泛关注和兴趣


3)作为共同主席组织“第十一届中国功能材料及其应用学术会议暨2024功能材料国际论坛”2024年5月17-20日,重庆


4)作为大会主席组织“2024数据驱动的高熵非晶材料大会”2024年12月6-8日,福建福州


5)目前主持国家自然科学基金/面上项目(3项)、人才引进基金、自主创新基金、人才培育基金等作为骨干成员参与国家重点研发计划(科技部)项目2项


6)招生与招聘:本课题组因工作需要长期招收计算和模拟方面的硕士、博士、博士后。要求:身心健康、品行端正、勤奋踏实、守正创新、具有良好的团队协作精神。招生的专业背景:(物理)化学、(化学)物理、催化、材料、纳米、能源等均可以。(长期招收博士后,感兴趣的同学请把简历发送至Lmyang@hust.edu.cn,博士后随时可以进站,年薪20万以上,待遇面议,华中科技大学博士后待遇为起薪,业绩出色者加薪),本课题组长期招收推荐免试硕士研究生和直接攻读博士研究生(化学、物理、材料、纳米、能源、环境等背景均可)。 本课题组与美国、挪威、德国、英国、新加坡、西班牙、韩国、香港、澳门等多个国家和地区著名大学的研究组建立并保持着长期的合作关系,(品学兼优的学生可以直接推荐至国外继续深造)学生可以根据实际情况前往合作研究、联合培养或者继续深造。非常欢迎各种形式(短期、中期、长期)的合作与访问交流,欢迎来电来函联系。热忱欢迎有兴趣的同学积极加盟! 同时也欢迎本科生同学来开展创新实践做毕业设计



近期代表性论文:


1) In Situ Reconstruction Post-Treatment for Efficient Carbon-Based Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells, Adv. Funct. Mater. 2024, 2408686, https://onlinelibrary.wiley.com/doi/10.1002/adfm.202408686  


2) Ultraselective and durable H2O2 electrosynthesis catalyst in acid by selenization induced straining and phasing, Nat. Commun. 2024, 15, 9346, https://www.nature.com/articles/s41467-024-53607-5


3) Machine Learning Speeds up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis, Energy Environ. Mater. 2024, EEM-2024-0321, in press.


4) Alleviating OH blockage on catalyst surface by puncture effect of single-atom sites to boost alkaline water electrolysis, J. Am. Chem. Soc. 2024, 146, 4883−4891. https://pubs.acs.org/doi/10.1021/jacs.3c13676?ref=pdf


5) Two-dimensional bimetal-embedded expanded phthalocyanine monolayers: a class of multifunctional materials with fascinating properties, Adv. Funct. Mater. 2024, 34, 2313171. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202313171


6) Low-Electronegativity Mn-Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability, Angew. Chem. Int. Ed. 2024, 63, e202317987, https://onlinelibrary.wiley.com/doi/10.1002/anie.202317987


7) Tandem Electro-Thermo-Catalysis for the Oxidative Aminocarbonylation of Arylboronic AcidstoAmides from CO2 and Water, Angew. Chem. Int. Ed. 2024, 63, e202314708, https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202314708


8) Amorphization Activated Multi-metallic Pd Alloys for Boosting Oxygen Reduction Catalysis, Nano Lett. 2024, 24, 1205−1213https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04045?ref=pdf


9) Two-dimensional hypercoordinate chemistry: challenges and prospects, WIREs Comput. Mol. Sci. 2024, 14, e1699. https://doi.org/10.1002/wcms.1699 (invited advanced review)


10) Face-Centered Cubic Ruthenium Nanocrystals with Promising Thermal Stability and Electrocatalytic Performance, ACS Catal. 2023, 13, 11023−11032, https://pubs.acs.org/doi/10.1021/acscatal.3c02836?ref=pdf


11) Low-Coordinated Pd Site within Amorphous Palladium Selenide for Active, Selective, and Stable H2O2 Electrosynthesis, Adv. Mater. 2023, 35, 2208101, https://onlinelibrary.wiley.com/doi/10.1002/adma.202208101


12) Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction,Angew. Chem. Int. Ed. 2021, 60, 22722 –22728https://onlinelibrary.wiley.com/doi/10.1002/anie.202109058 (高被引论文)


13) Single Atomic Cerium Sites with a High Coordination Number for Efficient Oxygen Reduction in Proton-Exchange Membrane Fuel Cells, ACS Catal. 2021, 11, 3923−3929, https://pubs.acs.org/doi/10.1021/acscatal.0c05503 (高被引论文)


14) Bi-Based Metal-Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction, Adv. Energy Mater. 2020, 10, 2001709. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202001709 (高被引论文、热点论文)


15) Two-Dimensional Anti-Van’t Hoff/Le Bel Array AlB6 with High Stability, Unique Motif, Triple Dirac Cones, and Superconductivity, J. Am. Chem. Soc. 2019, 141, 8, 3630-3640. https://pubs.acs.org/doi/10.1021/jacs.8b13075 (高被引论文)

被Chemical & Engineering News (C&EN)作为亮点报告

https://cen.acs.org/materials/2-d-materials/Borophene-impressive-electronic-physical-properties/97/i6

中文介绍:https://mp.weixin.qq.com/s/e9PDhHZmpL0fpllMYeWDQg

http://chem.hust.edu.cn/info/1052/5077.htm

该工作被国家自然科学基金委员会官方网站作为亮点专题报道

 http://www.nsfc.gov.cn/publish/portal0/tab434/info76312.htm

该工作引发了大量的后续研究,包括最近Nano Lett.一个研究工作证明了我们预测的二维AlB6纳米片的结构是正确的,并进一步发现了AlB6一个重要的性质:面内热导率比相应的硼烯高3倍

Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation, Nano Lett. 2020, 20, 7619−7626, https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03135


16) Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach, Angew. Chem. Int. Ed. 2017, 56, 14149 –14153, https://onlinelibrary.wiley.com/doi/10.1002/anie.201708548 (高被引论文)


17) Two-dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding, J. Am. Chem. Soc. 2015, 137, 2757-2762. https://pubs.acs.org/doi/10.1021/ja513209c (高被引论文)

该工作被JACS选为亮点 Selected as: Spotlights on Recent JACS Publications     http://pubs.acs.org/doi/abs/10.1021/jacs.5b01896

Highlighted in Nanoscience News [University of Cambridge]

http://www.nanomanufacturing.eng.cam.ac.uk/++contextportlets++plone.rightcolumn/news-items/full_feed

Highlighted in ChemFeedshttp://www.chemfeeds.com/comments.php?doi=10.1021/ja513209c

[Research-bulletin] Minnesota Supercomputing Institute Research Spotlights, January - June 2015

https://www.msi.umn.edu/content/novel-two-dimensional-copper-silicon-material

Research highlight at University of Bremen

http://www.uni-bremen.de/mapex/forschung/detail-highlights/news/detail/News/two-dimensional-cu2si-monolayer-with-planar-hexacoordinate-copper-and-silicon-bonding.html?cHash=814d52125e639efc412538c00ba03488

我们从理论上预测的Cu2Si不到2年时间就被实验制备出来,进一步被多个课题组在不同的基底上合成。

Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si, Nat. Commun. 2017, 8, 1007. https://www.nature.com/articles/s41467-017-01108-z

2019 Phys. Rev. Materials 3, 044004. 

https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.044004

我们二维Cu2Si单层的工作激发了后续大量的跟踪研究。。。。。。


18) Four Decades of the Chemistry of Planar Hypercoordinate Compounds, Angew. Chem. Int. Ed. 2015, 54, 9468–9501. (高被引论文) https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201410407

Featured in Cover http://onlinelibrary.wiley.com/doi/10.1002/anie.v54.33/issuetoc

Highlighted in Computational Chemistry http://www.compchemhighlights.org/2015/08/four-decades-of-chemistry-of-planar.html

Highlighted in Computational Organic Chemistry http://comporgchem.com/blog/?p=3573

 

19) Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets, J. Mater. Chem. A, 2019, 7, 11944-11952. https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA01188A#!divAbstract (高被引论文)


20) Electrochemical reduction of CO2 by single atom catalyst TM–TCNQ monolayers, J. Mater. Chem. A 2019, 7, 3805–3814.

https://pubs.rsc.org/en/content/articlelanding/2019/TA/C8TA08677J#!divAbstract (高被引论文)


21) Efficient and Selective Electroreduction of CO2 by Single-Atom Catalyst Two-Dimensional TM−Pc Monolayers, ACS Sustainable Chem. Eng. 2018, 6, 15494−15502, https://pubs.acs.org/doi/10.1021/acssuschemeng.8b03945 (高被引论文)


22) Two‐Dimensional Organometallic TM3–C12S12 Monolayers for Electrocatalytic Reduction of CO2, Energy Environ. Mater. 2019, 2, 193–200, https://onlinelibrary.wiley.com/doi/full/10.1002/eem2.12048


23) Efficient electrocatalytic reduction of carbon dioxide by metal-doped β12-borophene monolayers, RSC Adv. 2019, 9, 27710-27719, https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra04135d#!divAbstract

This article has been selected for the RSC Advances 10th Anniversary collection focusing on Catalysis for sustainable development https://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=ra&themeid=95a1c92c-6665-424e-a8a1-8a3077806aee

This article has been selected for Editors' collection: Carbon Dioxide Capture/Reduction

https://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=ra&themeid=50b74968-25da-42e9-a556-9bcedc0e1042


24) Adsorption Properties and Microscopic Mechanism of CO2 Capture in 1,1-Dimethyl-1,2-ethylenediamine-Grafted Metal−Organic Frameworks, ACS Appl. Mater. Interfaces 2020, 12, 18533−18540. 

https://pubs.acs.org/doi/10.1021/acsami.0c01927


25) Unveiling the Molecular Mechanism of CO2 Capture in N-Methylethylenediamine-Grafted M2(dobpdc), ACS Sustainable Chem. Eng. 2020, 8, 14616−14626. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c05951


26) Atomistic Level Mechanism of CO2 Adsorption in N‑Ethylethylenediamine-Functionalized M2(dobpdc) Metal−Organic Frameworks, Cryst. Growth Des. 2020, 20, 6337−6345. https://pubs.acs.org/doi/10.1021/acs.cgd.0c00269


27) Elucidation of the Underlying Mechanism of CO2 Capture by 2 Ethylenediamine-Functionalized M2(dobpdc) (M = Mg, Sc−Zn), Inorg. Chem. 2020, 59, 16665−16671, https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02654


28) Disclosing the microscopic mechanism and adsorption properties of CO2 capture in N-isopropylethylenediamine appended M2(dobpdc) series, Phys. Chem. Chem. Phys. 2020, 22, 24614--24623,

https://pubs.rsc.org/en/content/articlelanding/2020/CP/D0CP04068A#!divAbstract


29) Formation Mechanism of Ammonium Carbamate for CO2 Uptake in N,N′‑Dimethylethylenediamine Grafted M2(dobpdc)Langmuir 2020, 36, 14104−14112, https://pubs.acs.org/doi/10.1021/acs.langmuir.0c02750


30) Properties and Detailed Adsorption of CO2 by M2(dobpdc) with N,N-Dimethylethylenediamine Functionalization, Inorg. Chem. 2021, 60, 2656−2662, https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03527


31) CO2 Adsorption Properties of a N,N‑Diethylethylenediamine-Appended M2(dobpdc) Series of Materials and Their Detailed Microprocess, Cryst. Growth Des. 2021, 21, 2474–2480, https://pubs.acs.org/doi/10.1021/acs.cgd.1c00096

This paper is selected to 2021 Emerging Investigators in Crystal Growth & Design

https://axial.acs.org/2021/08/24/2021-emerging-investigators-in-crystal-growth-design/?utm_source=pubs_content_marketing&utm_medium=email&utm_campaign=PUBS_0921_JHS_axialnewsletter0921&src=PUBS_0921_JHS_axialnewsletter0921&ref=pubs_content_marketing_email_PUBS_0921_JHS_axialnewsletter0921


32) Ammonia Synthesis Using Single-Atom Catalysts Based on Two-Dimensional Organometallic Metal Phthalocyanine Monolayers under Ambient Conditions, ACS Appl. Mater. Interfaces 2021, 13, 608−621,  (高被引论文)

https://pubs.acs.org/doi/full/10.1021/acsami.0c18472


33) Electrocatalytic Reduction of N2 Using Metal-Doped Borophene, ACS Appl. Mater. Interfaces 2021, 13, 14091−14101, 

https://pubs.acs.org/doi/10.1021/acsami.0c20553

 

34) Two-Dimensional Single-Atom Catalyst TM3(HAB)2 Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening, ACS Appl. Mater. Interfaces 2021, 13, 26109−26122, 

https://pubs.acs.org/doi/full/10.1021/acsami.1c06414


35) Electrocatalytic Mechanism of N2 Reduction Reaction by Single-Atom Catalyst Rectangular TM-TCNQ Monolayers, ACS Appl. Mater. Interfaces 2021, 13, 29641−29653, https://pubs.acs.org/doi/full/10.1021/acsami.1c06368


36) Tailoring Unsymmetrical-Coordinated Atomic Site in Oxide-Supported Pt Catalysts for Enhanced Surface Activity and Stability,Small  2021, 17, 2101008 https://onlinelibrary.wiley.com/doi/10.1002/smll.202101008


37) Unveiling the underlying mechanism of transition metal atoms anchored square tetracyanoquinodimethane monolayers as electrocatalysts for N2 fixation, Energy Environ. Mater. 2022, 5, 533–542. https://onlinelibrary.wiley.com/doi/10.1002/eem2.12277


38) Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance, Nano Res. 2021, 14, 4512–4519.

https://doi.org/10.1007/s12274-021-3823-z


39) Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting, Applied Catalysis B: Environmental, 2022,  302, 120862. 

https://www.sciencedirect.com/science/article/pii/S0926337321009875


40) Single-Atom Catalysts Based on Two-Dimensional Metalloporphyrin Monolayers for Ammonia Synthesis under Ambient Conditions,  

 Nano Res. 2022, 15, 4039–4047. https://doi.org/10.1007/s12274-021-4009-4


41) Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets, Appl. Surf. Sci. 2022. 576. 151839. https://www.sciencedirect.com/science/article/pii/S0169433221028828?via%3Dihub


42) Efficient Modulation of Catalytic Performance of Electrocatalytic Nitrogen Reduction with Transition Metal Anchored N/O-codoped

Graphene by Coordination Engineering, J. Mater. Chem. A 2022, 10, 1481–1496 

https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA08877G


43) Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction, J. Colloid Interface Sci. 2022. 621. 24–32. 

https://www.sciencedirect.com/science/article/pii/S0021979722005525?via%3Dihub


44) Transition Metals Embedded Two-Dimensional Square Tetrafluorotetracyanoquinodimethane Monolayers as a Class of Novel Electrocatalysts for Nitrogen Reduction Reaction, ACS Appl. Mater. Interfaces, 2022, 14, 25317−25325.

https://pubs.acs.org/doi/10.1021/acsami.2c02677?ref=pdf


45) Dual transition metal atoms embedded N-doped graphene for electrochemical nitrogen fixation under ambient conditions, J. Mater. Chem. A, 2022, 10, 13527–13543 https://pubs.rsc.org/en/content/articlepdf/2022/TA/D1TA11024A?page=search


46) Magnetic Moment Is an Effective Descriptor for Electrocatalytic Nitrogen Reduction Reaction on Two-Dimensional Organometallic Nanosheets, ACS Appl. Mater. Interfaces 2023, 15, 22012−22024, https://pubs.acs.org/doi/10.1021/acsami.3c00004?ref=pdf&cookieSet=1


47) Transmutation Engineering Makes a Large Class of Stable and Exfoliable A3BX2 Compounds with Exceptional High Magnetic Critical Temperatures and Exotic Electronic Properties, ACS Appl. Mater. Interfaces 2023, 15, 24549−24569, https://pubs.acs.org/doi/10.1021/acsami.3c02536?ref=pdf


48) Effective modulation of the exotic properties of two-dimensional multifunctional TM2@g-C4N3 monolayers via transition metal permutation and biaxial strain, Nanoscale, 2023, 15, 9843–9863, https://pubs.rsc.org/en/content/articlelanding/2023/NR/D3NR00984J


49) Composition Engineering Opens an Avenue Toward Efficient and Sustainable Nitrogen Fixation, Energy Environ. Mater. 2024, 7, e12600,  https://onlinelibrary.wiley.com/doi/10.1002/eem2.12600


50) Unraveling the Activity and Mechanism of TM@g‑C4N3 Electrocatalysts in the Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces 2024, 16, 17617−17625. https://pubs.acs.org/doi/10.1021/acsami.4c01342?ref=pdf


51) Diatomic active sites embedded graphyne as electrocatalysts for ammonia synthesisACS Appl. Mater. Interfaces 2024, 16, 60231−60242 https://pubs.acs.org/doi/10.1021/acsami.4c13025?ref=pdf