杨利明

个人信息

Personal information

研究员     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:化学与化工学院

学历:研究生(博士)毕业

学位:理学博士学位

毕业院校:吉林大学

学科:无机化学
物理化学
曾获荣誉:
2019    华中卓越学者
2014    德国Hanse-Wissenschafts-Kolleg(HWK), Institute for Advanced Study高级研究所的Fellowship
2010    全国优秀博士学位论文提名奖
2010    吉林省优秀博士学位论文
2010    吉林大学优秀博士学位论文一等奖
2008    吉林大学第二十二届研究生“精英杯”学术成果大奖赛特等奖
2007    吉林大学2007年度”中国科学院奖学金”(全校仅2个名额)
2007    吉林大学优秀研究生奖学金
2007    吉林大学第二十一届研究生“精英杯”学术成果大奖赛二等奖

个人简介

中文主页 - 个人简介
个人简介

杨利明,男,华中科技大学/化学与化工学院,研究员/博士生导师。2008年7月获吉林大学/博士学位,2008年9月-2015年12月,先后在挪威奥斯陆大学(导师:Mats Tilset教授)、西班牙国际物理中心(导师:Aitor Bergera教授)、美国佐治亚大学(导师:世界著名化学家Paul von Ragué Schleyer院士)、麻省理工学院(导师:李巨教授/APS Fellow/MRS Fellow)、韩国科学技术研究院、德国不莱梅大学(导师:Thomas Frauenheim教授)、雅各布大学(导师:Thomas Heine教授)、洪堡大学(导师:Claudia Draxl教授/APS Fellow)从事博士后和访问研究。2016年2月加入华中科技大学/化学与化工学院,开展独立研究工作。


主要研究领域包括:人工智能、机器学习、高通量筛选、理论与计算化学、计算材料学、多尺度材料模拟、计算凝聚态物理;目前课题组聚焦在机器学习(人工智能)在二维材料和MOFs/COFs等多孔框架材料的理性设计和筛选/功能导向的材料设计、基于机器学习算法的高通量筛选光/电催化反应(NRR, CRR, ORR, OER, HER, etc高效催化剂并揭示微观反应过程、探索新型反应机理、揭示原子分子水平的构效关系等方面的研究。杨利明博士在二维层状材料、光电催化反应机理、多孔材料及其在清洁能源方面的应用等方面取得了一系列突出的研究成果。迄今在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Energy Mater., ACS Catal., Energy Environ. Mater., Small, Chem. Sci.等国际著名SCI刊物上发表论文80多篇,其中45篇为第一作者,47篇为通讯作者,论文被引用2400多次,相关研究工作被多家媒体作为新闻、科研亮点、封面文章和前沿文章报道。其中2015年预测的二维平面超配位材料Cu2Si单层(发表在JACS上 https://pubs.acs.org/doi/abs/10.1021%2Fja513209c 被选为Spotlights https://pubs.acs.org/doi/abs/10.1021/jacs.5b01896)于2017年在Cu(111)表面上被实验成功制备出来(发表在Nat.Common.上 https://www.nature.com/articles/s41467-017-01108-z),后续进一步的实验制备包括在Si(111)表面上(发表在2019 Phys. Rev. Materials 3, 044004. https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.044004)并激发了后续大量的跟踪研究。2015年预测的二维六方密堆积的金单层(https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp04222d#!divAbstract)于2019年被实验成功制备出来(https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b01494),这些成功预测的例子充分证明多尺度计算模拟对于实验合成/制备先进功能材料具有重要的指导意义。


杨利明博士于2014年入选德国Hanse-Wissenschafts-Kolleg (HWK), Institute for Advanced Study高级研究所的Fellow,2016年当选全国材料新技术发展研究会常务理事,2019年入选华中卓越学者,2021年入选2021 Emerging Investigators in Crystal Growth & Design https://axial.acs.org/2021/08/24/2021-emerging-investigators-in-crystal-growth-design/?utm_source=pubs_content_marketing&utm_medium=email&utm_campaign=PUBS_0921_JHS_axialnewsletter0921&src=PUBS_0921_JHS_axialnewsletter0921&ref=pubs_content_marketing_email_PUBS_0921_JHS_axialnewsletter0921

主要的学术兼职包括:美国化学会会员,英国皇家化学会会员,多个期刊杂志的编委/客座编辑,应邀为Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nano Lett., Acc. Chem. Res., Nanoscale, Chem. Commun., J. Phys. Chem. Lett., J. Mater. Chem. C, Phys. Chem. Chem. Phys.等60多种国际著名期刊杂志的专业审稿人,受邀40多个国际会议邀请报告和分会主席。

目前主持国家自然科学基金/面上项目(3项)、人才引进基金、自主创新基金、人才培育基金等


招生与招聘:本课题组因工作需要长期招收计算和模拟方面的硕士、博士、博士后。(长期招收博士后,博士后随时可以进站,待遇面议,华中科技大学博士后待遇为起薪,业绩出色者加薪),本课题组长期招收推荐免试硕士研究生和直接攻读博士研究生(化学、物理、材料、纳米、能源、环境等背景均可)。 本课题组与挪威、德国、西班牙、美国、韩国、香港等多个国家和地区著名大学的研究组建立并保持着长期的合作关系,(品学兼优的学生可以直接推荐至国外继续深造)学生可以根据实际情况前往合作研究、联合培养或者继续深造。非常欢迎各种形式(短期、中期、长期)的合作与访问交流,欢迎来电来函联系。热忱欢迎有兴趣的同学积极加盟! 同时也欢迎本科生同学来开展创新实践做毕业设计



近期代表性论文:


1) Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction,Angew. Chem. Int. Ed. 2021, 10.1002/anie.202109058https://onlinelibrary.wiley.com/doi/10.1002/anie.202109058


2)Single Atomic Cerium Sites with a High Coordination Number for Efficient Oxygen Reduction in Proton-Exchange Membrane Fuel Cells, ACS Catal. 2021, 11, 3923−3929, https://pubs.acs.org/doi/10.1021/acscatal.0c05503


3) Bi-Based Metal-Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction, Adv. Energy Mater. 2020, 10, 2001709. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202001709


4) Two-Dimensional Anti-Van’t Hoff/Le Bel Array AlB6 with High Stability, Unique Motif, Triple Dirac Cones, and Superconductivity, J. Am. Chem. Soc. 2019, 141, 8, 3630-3640. https://pubs.acs.org/doi/10.1021/jacs.8b13075

被Chemical & Engineering News (C&EN)作为亮点报告

https://cen.acs.org/materials/2-d-materials/Borophene-impressive-electronic-physical-properties/97/i6

中文介绍:https://mp.weixin.qq.com/s/e9PDhHZmpL0fpllMYeWDQg

http://chem.hust.edu.cn/info/1052/5077.htm

该工作被国家自然科学基金委员会官方网站作为亮点专题报道

 http://www.nsfc.gov.cn/publish/portal0/tab434/info76312.htm

最近Nano Lett.一个研究工作证明了我们预测的二维AlB6纳米片的结构是正确的,并进一步发现了AlB6一个重要的性质:面内热导率比相应的硼烯高3倍

Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation, Nano Lett. 2020, 20, 7619−7626, https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03135


5) Two-dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding, J. Am. Chem. Soc. 2015, 137, 2757-2762. https://pubs.acs.org/doi/10.1021/ja513209c

该工作被JACS选为亮点 Selected as: Spotlights on Recent JACS Publications     http://pubs.acs.org/doi/abs/10.1021/jacs.5b01896

Highlighted in Nanoscience News [University of Cambridge]

http://www.nanomanufacturing.eng.cam.ac.uk/++contextportlets++plone.rightcolumn/news-items/full_feed

Highlighted in ChemFeedshttp://www.chemfeeds.com/comments.php?doi=10.1021/ja513209c

[Research-bulletin] Minnesota Supercomputing Institute Research Spotlights, January - June 2015

https://www.msi.umn.edu/content/novel-two-dimensional-copper-silicon-material

Research highlight at University of Bremen

http://www.uni-bremen.de/mapex/forschung/detail-highlights/news/detail/News/two-dimensional-cu2si-monolayer-with-planar-hexacoordinate-copper-and-silicon-bonding.html?cHash=814d52125e639efc412538c00ba03488

我们从理论上预测的Cu2Si不到2年时间就被实验制备出来,进一步被多个课题组在不同的基底上合成。

Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si, Nat. Commun. 2017, 8, 1007. https://www.nature.com/articles/s41467-017-01108-z

2019 Phys. Rev. Materials 3, 044004. https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.044004

我们二维Cu2Si单层的工作激发了后续大量的跟踪研究。。。。。。


6) Four Decades of the Chemistry of Planar Hypercoordinate Compounds, Angew. Chem. Int. Ed. 2015, 54, 9468–9501.

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201410407

Featured in Cover http://onlinelibrary.wiley.com/doi/10.1002/anie.v54.33/issuetoc

Highlighted in Computational Chemistry http://www.compchemhighlights.org/2015/08/four-decades-of-chemistry-of-planar.html

Highlighted in Computational Organic Chemistry http://comporgchem.com/blog/?p=3573

 

7) Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets, J. Mater. Chem. A, 2019, 7, 11944-11952. https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA01188A#!divAbstract


8) Electrochemical reduction of CO2 by single atom catalyst TM–TCNQ monolayers, J. Mater. Chem. A 2019, 7, 3805–3814.

https://pubs.rsc.org/en/content/articlelanding/2019/TA/C8TA08677J#!divAbstract


9) Efficient and Selective Electroreduction of CO2 by Single-Atom Catalyst Two-Dimensional TM−Pc Monolayers, ACS Sustainable Chem. Eng. 2018, 6, 15494−15502, https://pubs.acs.org/doi/10.1021/acssuschemeng.8b03945


10) Two‐Dimensional Organometallic TM3–C12S12 Monolayers for Electrocatalytic Reduction of CO2, Energy Environ. Mater. 2019, 2, 193–200, https://onlinelibrary.wiley.com/doi/full/10.1002/eem2.12048


11) Efficient electrocatalytic reduction of carbon dioxide by metal-doped β12-borophene monolayers, RSC Adv. 2019, 9, 27710-27719, https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra04135d#!divAbstract

This article has been selected for the RSC Advances 10th Anniversary collection focusing on Catalysis for sustainable development https://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=ra&themeid=95a1c92c-6665-424e-a8a1-8a3077806aee

This article has been selected for Editors' collection: Carbon Dioxide Capture/Reduction

https://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=ra&themeid=50b74968-25da-42e9-a556-9bcedc0e1042


12) Adsorption Properties and Microscopic Mechanism of CO2 Capture in 1,1-Dimethyl-1,2-ethylenediamine-Grafted Metal−Organic Frameworks, ACS Appl. Mater. Interfaces 2020, 12, 18533−18540. https://pubs.acs.org/doi/10.1021/acsami.0c01927


13) Unveiling the Molecular Mechanism of CO2 Capture in N-Methylethylenediamine-Grafted M2(dobpdc), ACS Sustainable Chem. Eng. 2020, 8, 14616−14626. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c05951


14) Atomistic Level Mechanism of CO2 Adsorption in N‑Ethylethylenediamine-Functionalized M2(dobpdc) Metal−Organic Frameworks, Cryst. Growth Des. 2020, 20, 6337−6345. https://pubs.acs.org/doi/10.1021/acs.cgd.0c00269


15) Elucidation of the Underlying Mechanism of CO2 Capture by 2 Ethylenediamine-Functionalized M2(dobpdc) (M = Mg, Sc−Zn), Inorg. Chem. 2020, 59, 16665−16671, https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02654


16) Disclosing the microscopic mechanism and adsorption properties of CO2 capture in N-isopropylethylenediamine appended M2(dobpdc) series, Phys. Chem. Chem. Phys. 2020, 22, 24614--24623,

https://pubs.rsc.org/en/content/articlelanding/2020/CP/D0CP04068A#!divAbstract


17) Formation Mechanism of Ammonium Carbamate for CO2 Uptake in N,N′‑Dimethylethylenediamine Grafted M2(dobpdc)Langmuir 2020, 36, 14104−14112, https://pubs.acs.org/doi/10.1021/acs.langmuir.0c02750


18) Properties and Detailed Adsorption of CO2 by M2(dobpdc) with N,N-Dimethylethylenediamine Functionalization, Inorg. Chem. 2021, 60, 2656−2662, https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03527


19) CO2 Adsorption Properties of a N,N‑Diethylethylenediamine-Appended M2(dobpdc) Series of Materials and Their Detailed Microprocess, Cryst. Growth Des. 2021, 21, 2474–2480https://pubs.acs.org/doi/10.1021/acs.cgd.1c00096

This paper is selected to 2021 Emerging Investigators in Crystal Growth & Design


20) Ammonia Synthesis Using Single-Atom Catalysts Based on Two-Dimensional Organometallic Metal Phthalocyanine Monolayers under Ambient Conditions, ACS Appl. Mater. Interfaces 2021, 13, 608−621,  https://pubs.acs.org/doi/full/10.1021/acsami.0c18472


21) Electrocatalytic Reduction of N2 Using Metal-Doped Borophene, ACS Appl. Mater. Interfaces 2021, 13, 14091−14101, 

https://pubs.acs.org/doi/10.1021/acsami.0c20553

 

22) Two-Dimensional Single-Atom Catalyst TM3(HAB)2 Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening, ACS Appl. Mater. Interfaces 2021, 13, 26109−26122, https://pubs.acs.org/doi/full/10.1021/acsami.1c06414


23) Electrocatalytic Mechanism of N2 Reduction Reaction by Single-Atom Catalyst Rectangular TM-TCNQ Monolayers, ACS Appl. Mater. Interfaces 2021, 13, 29641−29653, https://pubs.acs.org/doi/full/10.1021/acsami.1c06368


24)Tailoring Unsymmetrical-Coordinated Atomic Site in Oxide-Supported Pt Catalysts for Enhanced Surface Activity and Stability,Small  2021, 2101008,https://onlinelibrary.wiley.com/doi/10.1002/smll.202101008


25)Unveiling the underlying mechanism of transition metal atoms anchored square tetracyanoquinodimethane monolayers as electrocatalysts for N2 fixation, Energy & Environmental Materials, 2021, Article DOI: 10.1002/eem2.12277, Internal Article ID: 17208948


26)Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance, Nano Research, 2021, 

https://doi.org/10.1007/s12274-021-3823-z