ZHANG JUN
·Paper Publications
Indexed by: Journal paper
First Author: Junbin Gao
Co-author: David Tien,ZHANG JUN
Journal: IEEE Trans. on Neural Networks
Included Journals: SCI
Volume: 21
Issue: 1
Page Number: 123-135
Key Words: Dimensionality reduction, Relevance units machine(RUM), Relevance vector machine(RVM), Gaussian process latent variable model(GPLVM)
DOI number: 10.1109/TNN.2009.2034964
Date of Publication: 2010-01-11
Abstract: A new dimensionality reduction method, called relevance units latent variable model (RULVM), is proposed in this paper. RULVM has a close link with the framework of Gaussian process latent variable model (GPLVM) and it originates from a recently developed sparse kernel model called relevance units machine (RUM). RUM follows the idea of relevance vector machine (RVM) under the Bayesian framework but releases the constraint that relevance vectors (RVs) have to be selected from the input vectors. RUM treats relevance units (RUs) as part of the parameters to be learned from the data. As a result, a RUM maintains all the advantages of RVM and offers superior sparsity. RULVM inherits the advantages of sparseness offered by the RUM and the experimental result shows that RULVM algorithm possesses considerable computational advantages over GPLVM algorithm.