高义华

个人信息Personal Information

教授   博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:物理学院

学历:研究生(博士)毕业

学位:博士学位

毕业院校:Institute of Physics (Beijing), CAS

学科:凝聚态物理

其他联系方式Other Contact Information

邮编 :

通讯/办公地址 :

移动电话 :

邮箱 :

个人简介Personal Profile

UPD Date:Mar. 12, 2024;更新日期:2024年3月12日

Prof. Yihua Gao  高义华教授

Laureate of the 16th Tsukuba Prize (30 Sept. 2005);

Inventor of Carbon Nanothermometer [Nature 415, 599 (2002)];

Professor both in School of Physics & 

Wuhan National Laboratory for Optoelectronics, 

Top Level-2 Professor of 

Huazhong University of Science and Technology (HUST); 

Luoyu Road 1037, Wuhan 430074, Hubei, P. R. China, 

(2)TEL: +86-13628664697;

http://faculty.hust.edu.cn/gaoyihua/zh_CN/index.htm;

Email: gaoyihua@hust.edu.cn, gaoyhTEM@qq.com


华中科技大学 二级教授,

物理学院 & 武汉光电国家研究中心 双聘教授,

碳纳米温度计发明人 [Nature 415, 599(2002)],

第16届日本筑波杰出科学家奖获得者 (2005年9月30日),

邮箱: gaoyihua@hust.edu.cn; gaoyhTEM@qq.com,

http://faculty.hust.edu.cn/gaoyihua/zh_CN/index.htm,

湖北省 武汉市 洪山区 珞喻路1037号,  电话: +86-13628664697


Yihua Gao  was born in Aug. 1969.  He entered into Hubei University as an undergraduate student when he was only 16 years' old (only 2'years studying in high school).  In 1998, he received his PhD degree of Institute of Physics, Chinese Academy of Sciences. Next he became a special researcher of National Institute for Materials Science (NIMS) of Japan. On 7 February 2002, Dr. Gao and Prof. Yoshio Bando reported the world's smallest thermometercarbon nanothermometer in Nature 415, 599. On 30 Sept. 2005, Dr. Gao received the 16th Tsukuba Prize together with Prof. Y. Bando and Dr. D. Golberg. Afterwards, this achievement was edited into the USA textbook “Introductory Chemistry: A Foundation” from the 5th edition (Year 2005) to nowthe 9th edition.  Now, he entered the TOP 100,000 Scientists in all research fields as No. 32640 (Dec. 1, 2023. Web address: http://www.globalauthorid.com/WebPortal/EliteOrder). In March 2006, Dr. Gao accepted a professorship in Huazhong University of Science and Technology (HUST, Wuhan). He is a supervisor of Ph. D candidates,  Professor of New Century Excellent Talents (NCET-08-0230),  Chutian Scholar Distinguished Professor (20092012),  Outstanding Youth Professor of Hubei Province and Top level-2  Distinguished Professor in HUST. He has worked in the field of novel optoelectronic materials and devices for 24 years and got a lot of achievements. Till now, he has been in charge of 1 NCET program and 6 NSFC programs, attended one “973” program of the "MOST”. He has published 140 peer-reviewed papers as the 1st or the corresponding author. Among the published papers, 60 papers have IF >10 and the H Factor is 51. One of the papers is honored as the 1st grade paper of “the 16th science paper prize of Hubei Province”. He has obtained 19 patents (11 Chinese patents, 6 Japanese patents and 2 USA patents). He has trained 3-post doctoral researcher, 22 Ph. D. (including 2 foreign students) and 35 Masters. In his group and graduated students, 2 lectures and 5 students were promoted as Full Professors and 15 students were promoted as Accociate Professors. 13 students obtained the fame of “National Outstanding Students”, 2 students obtained the fame of “Excellent Graduates” and 1 student obtained the fame of “Excellent Ph. D. Dissertation of Hubei Province”. Now, 11 Ph. D. Candidates and 17 Master students are working and studying in his group.

     高义华,湖北应城人,未满16岁时(2年高中)于1985年以优秀成绩考入大学,1998年中科院物理所毕业并取得博士学位,1999年3月赴日本National Institute for Materials Science(NIMS)工作(其中2003年5月-2004年2月,美国西北大学访问学者),2005年1月入职华中科技大学,2006年3月回国全职工作。于2005年9月30日与Prof. Yoshio Bando, Prof. Dmitri Golberg获得第16届日本“Tsukuba Prize(筑波杰出科学家奖, 由1973年物理学诺贝尔奖得主江崎玲於奈教授和2000年化学诺贝尔奖得主白川英树教授颁奖)”研究成果被选入美国高中化学教科书“Introductory Chemistry: A Foundation”(2005年第5版−现在第9版)历任楚天学者特聘教授(2009-2012年),获新世纪优秀人才支持计划(2008年,NCET-08-0230)和湖北省杰出青年教授计划(2007年)支持。现任华中科技大学二级教授、博士生导师和华中学者特聘教授, 物理学院&武汉光电国家研究中心双聘教授,物理学院纳米材料与器件物理团队负责人。高义华教授长期从事新型光电力热材料与器件的研究, 在电能存储、光发射与光力热探测等方面的微纳尺度结构器件研究中取得了一系列突出进展。在全球所有领域的顶尖10万名学者中排名为第32640名<2023年12月1日更新>,网址:http://www.globalauthorid.com/WebPortal/EliteOrder。参与一项973项目,获6项国家自然科学基金的面上项目支持和1项新实际人才基金的支持。共发表SCI文章235篇,其中在Nature;Nat. Commun.; Adv. Mater.; Adv. Funct. Mater.; Nano Energy; Nano Lett.; ACS Nano等权威期刊上发表第一作者或通讯作者文章140篇,IF>10文章60篇,H因子51。1篇学术论文获“湖北省第十六届自然科学优秀学术论文”一等奖。作为团队负责人(共5名老师成员),团队内共培养3名博士后,29名博士和49名硕士(个人名下已培养3名博士后,22名博士和35名硕士)。2名团队成员和5名毕业研究生已成为正教授,15名毕业研究生已成为副教授。13名学生获“国家奖学金”奖励,1篇博士论文获“湖北省优秀博士论文”荣誉。


Prof. Yihua Gao's most distinguished four works with original creativity:

高义华教授的最为突出的5项原创性工作:

(1) Recently, topological insulator MnBi2Te4 has aroused a great attention, owing to its exotic quantum phenomena and intriguing device applications, but the superior performances of MnBi2Te4 have not been researched in the field of electrochemistry. By theoretical calculation, it is found that MnBi2Te4 exhibits excellent Zn2+ storage and transport properties. Therefore, it is speculated that MnBi2Te4 has excellent electrochemical performance in zinc-ion batteries (ZIBs). In this research, the MnBi2Te4 as a pioneer has been explored in ZIBs, showing surprising electrochemical properties. The MnBi2Te4 electrode displays the high average discharge specific capacity (264.8 mA h g1 at 0.40A g1), competitive cycle life (88.6% of initial capacity after 400 cycles at 4.00 A g−1) and excellent rate performance (average capacity retention rate of 95.1% from 0.40 to 8.00 A g−1), owing to the fast ion transport of the conductive topological surface state and dissipationless channel of the edge state. Surprisingly, the quasi-solid-state (QSS) MnBi2Te4/Zn battery delivers excellent Zn2+ storage capability, and possesses a capacity retention of 79.9 % after 1000 cycles at 4.00 A g−1. In addition, QSS MnBi2Te4/Zn battery can exhibit excellent performance and the GCD curves keep stability without distortion deformation even at the temperatures of 0 ℃ and 75 ℃. (温莉,王思亮,岳阳,高义华等,ACS Nano,  https://doi.org/10.1021/acsnano.4c01137).

(Te)在硫族元素中具有最强的金属特性,并且Te的高电导率促进储能的反应,带来储能器件的高倍率性能。因此,对于具有Te-Bi-Te-Mn-Te-Bi-Te SL)结构的MnBi2Te4来说,Te的引入导致更高的导电性和更大的层间距,以及拓扑(TI)的特性。同时,由于每个SL中间Mn原子的存在,使得其性能不同于一般TI材料。MnBi2Te4在保持S对称的表面上具有无间隙的Dirac锥表面态,在S对称被破坏的表面上具有间隙的Dirac锥表面态。在无间隙表面态的情况下,不受束缚的电子转移只能发生在材料的二维表面。当表面态在Dirac点处有间隙时,边缘态会产生量子反常霍尔效应,从而出现无耗散通道,就像无散射的一维理想导线,电阻极低,能耗极小。通过理论计算,发现MnBi2Te4具有优异的Zn2+储存和输运性能。在这项研究中,MnBi2Te4表现出令人惊讶的电化学性能。在0.40A/g条件下,MnBi2Te4电极具有较高的平均放电比容量(264.8 mA h/g),具有优秀的循环寿命(在4.00 A/g条件下,400次循环后的初始容量为88.6%)和倍率性能(在0.40 ~ 8.00 A/g条件下的平均容量保持率为95.1%),这主要归功于导电拓扑表面态的快速离子传输和边缘态的无耗光通道。令人惊讶的是,准固态MnBi2Te4/Zn电池也表现出了出色的Zn2+存储能力,在4.00 A/g下循环1000次后,其容量保持率为79.9%。此外,准固态MnBi2Te4/Zn电池在0℃75℃温度下均能表现出优异的性能,GCD曲线保持稳定,不发生畸变。

image.png


(2) An asymmetric Thin-graphene(Gr, ~12 nm)/CsPbBr3-p-GaN/Thick-Gr(~24 nm) van der Waals bi-heterostructure was fabricated [Nano Energy 103, 107770 (2022)]. At the conditions of 1 atm atmosphere and room temperature, a large inverse photoconductance (IPC) with a ratio of 32.6 and short response/recovery times of ~100.0 μs was obtained under a low drive bias of 0.10 V and an irradiation of 360.0 nm laser. The effect is due to the adjustment of bandgap and carriers between the two asymmetric interfaces. This research breakthrough the limits of liquid nitrogen temperature, vacuum and off/on ratio of 4.0. Based on the large IPC effect, we obtained a “TERNARY” opto-electronic logic gate with simplification and diversity, fast response/recovery speeds and good stability by combining with PC materials. This asymmetric bi-heterostructure with a large IPC effect provides a strategy to promote the development of optoelectronic technologies.  

     构筑出不对称的薄石墨烯/p−GaN/厚石墨烯的范德华双异质结构(如下图),调节两个界面层的能带结构,调控偏置电压下的载流子移动方向,在常温常压下实现了32.6的巨大关开比 [off/on,Nano Energy 103, 107770 (2022)]的反光电导效应。此研究突破了国际上的同类效应的诸多限制(液氮温度,真空条件,不到4.0的关开比),为高性能的光电器件设计提供机理和思想。


Figure 1.png

  

(3)  He verified the Archimedes’ principle for a solid object floating on a liquid medium with an arbitrary surface area. He  quantitatively conceptualizes the potential field of buoyancy as a conservative force requirement, and confirms its “pseudopotential” character. Moreover, based on the pseudopotential energy concept, he validates the general physical criterion that the total potential energy is minimized in a delicately stable state. This was done by conducting experiments with uniform cubic toy blocks of various densities on a liquid with an arbitrary surface area. Applying the proposed concept of the pseudopotential energy of buoyancy, researchers could design the volume and mass in order to optimize the delicate stability of manmade floating objects (Nano Energy 60,  231 (2019), see the below figure). This work gave the essence of the buoyancy for the Archimedes’ principle [Physics (Chinese TOP Journal) 50(6), 402 (2021)].  

 诠释并发展了具有2200年历史的阿基米德原理(在有限大液面或无限大液面均成立),提出并论证了浮力赝势能和力稳定观点(如下图),对水中漂浮物的重量与体积设计提供重要参考[Nano Energy 60, 231(2019)],为中学物理教科书中阿基米德原理提供本质解释[物理 50(6),402(2021)]。


(4) He discovered the characteristics of greatly changed interlayer distances of MXene under force and made a highly flexible/sensitive piezoresistive sensor based on this characteristics [Nat. Commun. 8, 1207 (2017), as the above figure]. 

  发现了在外力作用下,MXene材料的大的层间距变化(如上图右分图),并用于设计出高灵敏度的压力传感器 [Nat. Commun. 8, 1207 (2017)]


(5) On 7 February 2002, Dr. Yihua Gao as the 1st author reported the world's smallest thermometer─carbon nanothermometer in Nature 415, 599.  On Sept. 30, 2005, Dr. Gao received the Tsukuba Prize with Prof. Yoshio Bando and Prof. Dmitri Golberg. (A) Prof. Leo Asaki (江崎玲於奈, Nobel Prize Laureate of Year 1973 in Physics) is awarding Dr. Gao the Prize Certificate. (B) The group photo in News Release Meeting of the Prize: the 1st row, (from left) Prof. Leo Asaki, Prof. D. Golberg, Prof. Y. Bando, Dr. Yihua Gao, and Prof. Hideki Shilakawa (白川英樹, Nobel Prize Laureate of Year 2000 in Chemistry, see the below figures).  This achievement was edited into the USA textbook “Introductory Chemistry: A Foundation” from the 5th edition to now─the 8th edition (Ed. Steven S. Zumdahl, Donald J. DeCoste, USA, Publication: Cengage Learning). 

  在2002年,作为第一作者研制并发表Nature文章1篇[Carbon nano-thermometer 碳纳米温度计,Nature 415, 599 (2002)],于2005年9月30日与Prof. Yoshio Bando, Prof. Dmitri Golberg获得第16届日本“Tsukuba Prize(筑波杰出科学家奖, 由1973年物理学诺贝尔奖得主江崎玲於奈教授和2000化学诺贝尔奖得主白川英树教授奖)”,此成果还被选入美国中学化学教科书“Introductory Chemistry: A Foundation”(编辑:Steven S. Zumdahl, Donald J. DeCoste 美国,出版社:Cengage Learning),如下系列图。


  


  



一,Research overview  研究简介

1.  General description of the involved sub-discipline  所属二级学科介绍


      The “Group of Physics in Nanomaterials & Nanodevices” is a complex one aiming at “frontier & originality” and “applications”. Its research topic is “Studies on New Nanomaterials & Nanodevices in Optoelectronic Field” included in the sub-discipline of “Condensed Matter Physics”.  The group has 7 members: 5 Full Professors, 1 Associate Professors and 1 Engineer). 2 Members are from WNLO and 4 Members are from School of Physics, HUST. Prof. Yihua Gao is a Professor both in WNLO and School of Physics, HUST. It faces three requirements: 

The frontier of the world science and technology: originality;

The needs of the nationality: save energy and resource;

The need of national economy.  


  “纳米材料与器件物理”团队,属物理学院物理学科下的凝聚态物理学科,共有团队成员5名(教授4名,副教授1名,高义华本人是物理学院与武汉光电国家研究中心的双聘教授)。从事新型纳米光电材料与器件的研究。三个向:

◆ 面向世界科技前沿:原创性;

◆ 面向国家重大战略需求:能源节约和资源节约;

◆ 面向国民经济主战场。

 

2. Research topics and backgrounds, including research objects and significance

  开展的研究课题及其科学目标和意义,国内外研究现状:

Topics 研究课题:

◆ Sensing: Large negative photoconductivity effect at room temperature & self-powered information sensing;

◆ In-situ transmission electron microscopy study on micromechanisms of energy storage and transformation; 

Study on devices of energy storage and transformation.

   

◆ 常温巨大负光电导效应研究和自驱动能源的信息传感器研究;

◆ 清洁能源存储器件和能源转换器件的电子显微学原位微机制研究;

◆ 能源转化与存储器件研究。

  

  (1) Sensing: 

  Large negative photoconductivity effect at room temperature. Absence of giant negative photoconductivity effect at room temperature limits the applications of photo-detecting and photo-computing. In our study, we will obtain giant negative photoconductivity effect by using 0D-1D-2D composite materials, dig and confirm the micromechanism, and realize logic computation devices by combining the ordinary positive photoconductivity effect.




◆  Self-powered information sensing. Today’s sensors have requirements, such as high sensitivity, self-powered digitization and integration of multifunction of sensor, amplifier, computer and compensator. By controlling bandgap, carriers and outer stimulation on the surface and interfaces of materials, we will realize synergy between several devices in the circuits and self-powering sensing with high sensitivity.


 (2) In-situ transmission electron microscopy study on micromechanisms      

 Devices of energy storage and transformation. Today, in-situ TEM studies on electrode materials of Li/Na ion battery have been progressed well. However, the direct micromechanism for energy storage devices (supercapactor, SC) is absent. So, we hope to give the relation between the charge/discharge progress and the microsctructure of the electrode materials, influence of the microsctructure of electrode materials on the performances of the SCs, and the optimizing choices to obtain electrodes with high performances. 

Energy transforming devices. Today’s understanding of the optoelectronic characteristics is only based on  simulation and speculations, and the micromechanism of charge distribution and transport during device operation is absent. So, we will illuminate the micromechanism for the novel performance of optoelectronic devices, and develop in-situ holography EM study.


(3) Studies on devices of energy storage and transformation

Composite novel white LED. The present GaN film LED is a high efficiency devices, whose bandgap is adjusted by alloyed-doping adjust. However, the UV portion in the light is harmful to eyes and the phosphor packaging decreases efficiency. In our study, by quantitatively adjusting bandgap, red-shifting the UV portion, we will obtain white and visible LED; by controlling the transport of carriers, increasing the density of carriers, decreasing the turn-on voltage, we will realize stable and highly efficient LED.


 Energy storage Devices. Today, it is usually difficult to get an energy storage device with both high energy and power density. We will exploit composite energy storage devices with both high energy and power density based on 2D materials, e.g. graphene and Mxene, and at last put into applications. 



研究目标

满足我国先进电子材料重点发展要求;开发高效的新能源存储和光电转化材料与器件;大幅提高能源储存能力、光电转化与感知能力;发展低维结构电子学。意义:促使能源资源与物资资源的节约使用;微观机理研究达到国际领先地位;宏观性能与器件的研究为应用铺平道路。


国内外研究现状:

1)现有信息传感器中,由于材料和机理的限制,集成化,多功能化,自驱动化和数字化方面还做得远远不够。光电探测与传感中,常温下大负光电导效应缺席,限制光传感和光运算方面的应用。

2)清洁能源存储器件的电子显微学原位微观机理研究上,机制停留于推理。在能源转换器件的电子显微学原位微观机理研究上,对光电特性的理解,只是理论模拟或推测;微器件工作时的电荷分布与输运研究都是空缺。这些造成下一步的研究缺乏理论根据和针对性。

3在能源转化与存储器件领域中复合新型白光LED的研究中,现GaN薄膜的白光LED器件效率高,利用合金化掺杂调节能带。但存在(伤眼)紫外光,荧光粉降低效率等问题。在能源存储器件中,电池型的高能量密度与电容型的高功率密度不可兼得。


研究计划及与预期成果:

1)在光电探测与传感研究中,获得巨大负光电导效应并揭示微机制,结合正光电导效应,实现多种逻辑运算。在信息传感器研究中,实现材料的表面和界面能级行为调控,电荷行为调控和外部刺激调控,多种器件在电路中的协同整合,将承载所需探测信息的能量转换为输出电信号的自驱动传感。

2)清洁能源存储器件的电子显微学原位微观机理研究:电荷存储过程与电极材料的微结构(形貌、晶体结构、缺陷、组成)的相互作用微机制;电极材料的微结构(形貌、晶体结构、缺陷、组成)等对性能的影响;指导高性能电极材料的优化选择。阐明光电器件宏观奇异光电行为的微机制;发展原位电子全息的电子显微学研究。在能源转换器件的电子显微学原位微观机理研究上:阐明光电器件宏观奇异光电行为的微机制;发展原位电子全息的电子显微学研究。

3)发展MXene等二维材料的复合型兼顾高能量密度与高功率密度的能源存储器件。


争取重要项目及重要科研平台建设情况:

 Till to Jan. 2023, the group has got a total funding of 8,500,000 RMB, including 11 NSFC projects, 1 funding in “973” project, 1 NCET project etc. In the future, the group will try to get the key projects of NSFC and MOST. The group can utilize the platform support with a total value over 39,000,000 RMB.

2022年12月止,团队内共申请到13项国家自然科学基金、1973的骨干基金、1项新世纪人才基金和其他支持,共计900余万。团队花费了很大的精力,建立以下三大平台,总值3900万:材料与器件工艺设备平台,结构表征和性能测试设备平台和大型电镜设备平台。

 

二,The 1st & corresponding SCI Papers 第一作者和通讯作者SCI文章

(一)5 SCI papers with original creativity,  原创性SCI文章5


5. L. Wen, Q.X. Zhang, J.J. Shi, F. Wang, S.L. Wang*, Z.W. Chen, Y. Yue*, Y.H. Gao*. Layered Topological Insulator MnBi2Te4 as Cathode for High-rate Performance Aqueous Zinc-Ion Battery. ACS Nano, https://doi.org/10.1021/acsnano.4c01137.

4. Y.B. Chen#, H.N. Jin#, T.T. Yin#, R. Wan, P.F. Ma, L.W. Zhang, Z.Y. Chen, Y.N. Ma, H.X. Li, X.H. Zhang, J. Su, N.S. Liu, Z. Zhang, L.Y. Li, Y.H. Gao*, Y. Bando*. A Large Inverse Photoconductance Based on an Asymmetric Van der Waals Bi-heterostructure. Nano Energy 103, 107770 (2022).

3. B.W. Gao#, L. Li#, Z.C. Lu & Y.H. Gao*. Subtle energy difference determining the delicately stable state of a solid object on a liquid medium with an arbitrary surface area. Nano Energy 60, 231-234 (2019).

2.  Y.N. Ma#, N.S. Liu#, L.Y. Li#, X.K. Hu, Z.G. Zou, J.B. Wang, S.J. Luo & Y.H. Gao*A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017).

1. Yihua Gao (Y.H. Gao) & Yoshio Bando (Y. Bando)Carbon nanothermometer containing gallium.  Nature 415, 599 (2002).


     (二)13 Top SCI papers (IF>20) in research field,影响因子大于20的领域内顶尖杂志文章(中科院一区) 13篇。累计以上文章共18

13. J.J. Shi, K. Mao, Q.X. Zhang, Z.Y. Liu, F. Long, L. Wen, Y.X. Hou, X.L. Li, Y.N. Ma, Y. Yue*, L.Y. Li, C.Y. Zhi, Y.H. Gao*. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. Nano-Micro Lett. 15(1), 53 (2023). DOI:10.1007/s40820-023-01023-7. DEC 2023; 2023-03-13.

12. J.N. Lu, Z. Zhang*, Y.F. Zheng, Y.H. Gao*. In-situ Transmission Electron Microscopy for Sodium-ion BatteriesAdv. Mater. 35, 2300359 (2023). e2300359 DOI: 10.1002/adma.202300359. 出版时间2023-Mar-14已索引2023-03-16. 文献类型Journal Article; Review

11. Q.X. Zhang#, D.D. Lei#, N.S. Liu*, Z.Y. Liu, Z.Q. Ren, J.Y. Yin, P.X. Jia, W.Z. Lu, Y.H. Gao*. A Zinc-Ion Battery-Type Self-Powered Pressure Sensor with Long Service Life. Adv. Mater.34(40), 2205369 (2022). 文献号2205369; DOI10.1002/adma.202205369; 在线发表SEP 2022.

10. D.D. Lei, N.S. Liu*, T.Y. Su, Q.X. Zhang, L.X. Wang, Z.Q. Ren & Y.H. Gao*. Roles of MXenes in Pressure Sensing: Preparation, Composite Structure Design and Mechanism. Adv. Mater. 2110608 (2022). 文献号2110608; DOI10.1002/adma.202110608; 在线发表JUN 2022

9. W.F. Liu, Z. Zhang*, Y.N. Zhang, Y.F. Zheng, N.S. Liu, J. Su & Y.H. Gao*. Interior and Exterior Decoration of Transition Metal Oxide Through Cu0/Cu+ Co‑Doping Strategy for High‑Performance Supercapacitor. Nano-Micro Lett. 13, 61 (2021).

8. L.Y. Xu, L. Xu, J.J. Luo, Y. Yan, B.E. Jia, X.D. Yang, Y.H. Gao& Z.L. Wang*. Hybrid All-in-One Power Source Based on High-Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy. Adv. Energy Mater. 102001669 (2020).

7. Z. Kang, Y.F. Cheng, Z. Zheng, F. Cheng, Z.Y. Chen, L.Y. Li, X.Y. Tan, L. Xiong, T.Y. Zhai & Y.H. Gao*. MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference. Nano-Micro Lett. 11, 34 (2019). 

6. Y.M. Wang, Y. Chen, W.Q. Zhao, L.W. Ding, L. Wen, H.X. Li, F. Jiang, J. Su, L.Y. Li, N.S. Liu & Y.H. Gao*. A Self-Powered Fast-Response Ultraviolet Detector of p–n Homojunction Assembled from Two ZnO-Based Nanowires. Nano-Micro Lett. 9, 11 (2017).

5. L.W. Ding#, N.S. Liu#, L.Y. Li#, X. Wei, X.H. Zhang, J. Su, J.Y. Rao, C.X. Yang, W.Z. Li, J.B. Wang, H.S. Gu Y.H. Gao*. Graphene Skeleton Heat-Coordinated and Nano-Amorphous- Surface-State Controlled Pseudo-Negative-Photoconductivity of Tiny SnO2 Nanoparticles. Adv. Mater. 27 (23), 3525-3532 (2015).

4. M.R. Al-bahrani, W. Ahmad, H.F. Mehnane, Y. Chen, Z. Cheng & Y.H. Gao*.  Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells. Nano-Micro Lett. 7, 298-306 (2015).

3. J.Y. Tao, W.Z. Ma, N.S. Liu, X. L. Ren,Y.L. Shi, J. Su & Y.H. Gao*. High-Performance Solid-State Supercapacitors Fabricated by Pencil Drawing and Polypyrrole Depositing on Paper Substrate. Nano-Micro Lett. 7, 276-281 (2015). 

2. N.S. Liu#, W.Z. Ma#, J.Y. Tao, X.H. Zhang, J. Su, L.Y. Li, C.X. Yang, Y.H. Gao*, D. Golberg & Y. Bando. Cable-Type Supercapacitors of Three-Dimensional Cotton Thread Based Multi-Grade Nanostructures for Wearable Energy Storage. Adv. Mater. 25, 4925-4931 (2013).

1. X.Y. Han, Y.H. Gao* & X.H. Zhang.  One-dimensional GaN nanomaterials transformed from one-dimensional Ga2Oand Ga nanomaterials. Nano-Micro Lett. 1, 4-8 (2009).


(三)41 Top SCI papers (IF>10) in research field, 领域内顶尖文章(IF>10)42累计以上文章共60

42. H.Y. Liao, Z. Zhang*, Y.F. Zheng, Y.H. Gao*. NaFePO4 for sodium-ion batteries: Mechanism, synthesis and optimization strategies toward commercialization. Energy Storage Mater. 65, 103157 (2024).

41. K. Niu, J.J. Shi, L. Zhang, Y. Yue, S.Y. Mo, S.F. Li, W.B. Li, L. Wen, Y.X. Hou, L. Sun, S.W. Yan, F. Long*, and Y.H. Gao*. MXene-Integrated Perylene Anode with Ultra-Stable and Fast Ammonium-Ion Storage for Aqueous Micro Batteries. Adv. Sci. 11, 2305524  (2023).

40. Y.F. Zheng, Z. Zhang*, T.T. Yin, X.T. Fu, J.N. Lu, S.Y. Cheng, Y.H. Gao*. Micron-sized H2MoO3/PANI for superfast proton batteries in frozen electrolyte through Grotthuss mechanism. Sci. Bull. 68, 2945-2953 (2023).

39. L. Sun, Y.S. Xu, T.T. Yin, R. Wan, Y.N. Ma, J. Su, Z. Zhang, N.S. Liu, L.Y. Li, T.Y. Zhai*, Y.H.  Gao**. Van der Waals heterostructure of Bi2O2Se/MoTe2 for high-performance multifunctional devices. Nano Energy 119, 109047 (2024). 

38. W.Z. Lu, Q.X. Zhang, N.S. Liu*, D.D. Lei, Z.Q. Ren, J.Y. Yin, P.X. Jia, and Y.H. Gao*. Nylon Fabric/GO Based Self-Powered Humidity Sensor Based on the Galvanic Cell Principle with High Air Permeability and Rapid-Response. Small 20, 2306463 (2024).

37. S.C. Zhang, Z.G. Zou*, Y.H. Gao*, J. Geng, M. Chen, W.Q. Ling, F.G. Liang, X.X. Peng, M.X. Zhou, F.G. Yu, S.K. Jia. Boosting zinc-ion storage in vanadium oxide via “dual-engineering” strategy. Nano Energy 115, 108736 (2023).

36. T. Huang, B.W. Gao, S.R. Zhao, H.Z. Zhang, X.X. Li, X. Luo, M.L. Cao, C.K. Zhang, S.J.  Luo, Y. Yue*, Y.N. Ma*, Y.H. Gao*. All-MXenes zinc ion hybrid micro-supercapacitor with wide voltage window based on V2CTx cathode and Ti3C2Tx anode. Nano Energy 111, 108383 (2023).

35. L. Wen, J.J. Shi, Q.X. Zhang, F. Wang, S.L. Wang*, S.J. Zhang, Q. Wang, K. Mao, F. Long, Y.H. Gao*, Ti3C2Tx-TiSe2 analogous heterostructure for flexible zinc ion battery. 150225-232.  J. Mater. Sci. Technol. 150, 225-232 (2023). 

34. F. Long, Q.X. Zhang, J.J. Shi, L. Wen, Y.H. Wu, Z.Q. Ren, Z.Y. Liu, Y.X. Hou, K. Mao, K. Niu, N.S. Liu, Z. Zhang, L.Y. Li, J. Su, F. Long*, Y.H. Gao*. Ultrastable and ultrafast 3D charge–discharge network of robust chemically coupled 1T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J. 455, 140539 (2023).

33. Z.Q. Ren#, H. Zhang#, N.S. Liu*, D.D. Lei, Q.X. Zhang, T.Y. Su, L.X. Wang, J. Su, Y.H. Gao*. Self-powered 2D nanofluidic graphene pressure sensor with Serosa-Mimetic structure. EcoMat. e12299 (2022). DOI: 10.1002/eom2.12299.

32. T.T. Yin, Y.F. Cheng, Y.X. Hou, L. Sun, Y.N. Ma, J. Su, Z. Zhang, N.S. Liu, L.Y. Li, Y.H. Gao*. 3D Porous Structure in MXene/PANI Foam for a High-Performance Flexible Pressure Sensor. Small 18(48), 2204806 (2022). DOI: 10.1002/smll.202204806.

31. K. Mao, J.J. Shi, Q.X. Zhang, Y.X. Hou, L. Wen, Z.Y. Liu, F. Long, K. Niu, N.S. Liu, F. Long*, Y.H. Gao*. High-capacitance MXene Anode Based on Zn-ion Pre-intercalation Strategy for Degradable Micro Zn-ion Hybrid Supercapacitors. Nano Energy 103, 107791 (2022).

30. P.F. Ma, Y.X. Hou, Y.F. Zheng, J. Su, L.Y. Li, N.S. Liu, Z. Zhang, Y.N. Ma & Y.H. Gao*. Super-Hydrophobic Cs4PbBr6@PDB Composites with Water-Driven Photoluminescence Enhancement and Dehydration Recovery. Chem. Eng. J436, 135077 (2022).

29. Y.F. Zheng, Z. Zhang*, W.F. Liu, Y.H. Wu, X.T. Fu, L.Y. Li, J. Su & Y.H. Gao*. Investigations on the Electrochemical and Mechanical Properties of Sb2O3 Nanobelts by In Situ Transmission Electron Microscopy. Small Methods 6, 2101416 (2022).

28. L. Wen, Y.N. Wu, S.L. Wang*, J.J. Shi, Q.X. Zhang, B.T. Zhao, Q. Wang, C.J. Zhu, Z.Y. Liu, Y.F. Zheng, J. Su & Y.H. Gao*. A novel TiSe2 (de)intercalation type anode for aqueous zinc-based energy storage. Nano Energy 93, 106896 (2022).

27. J.J. Shi#, Y.X. Hou#, Z.Y. Liu, Y.F. Zheng, L. Wen, J. Su, L.Y. Li, N.S. Liu, Z. Zhang & Y.H. Gao*. The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 91, 106651 (2022).

26. P.F. Ma, Y.X. Hou, Z.Y. Chen, J. Su, L.Y. Li, N.S. Liu, Z. Zhang, X.L. Jiang*, F. Long, Y.N. Ma & Y.H. Gao*. Enhanced stability of CsPbBr3 Quantum Dots by anchoring on the hierarchical three-dimensional layered double hydroxide. Chem. Eng. J425, 130471 (2021).

25. L.W. Zhang, W.X. Liang, L. Xu, M. Zhu, X. Wang, J. Su, L.Y. Li*, N.S. Liu, Z. Zhang & Y.H. Gao*. Room-temperature quaternary alkylammonium passivation toward morphology-controllable CsPbBr3 nanocrystals with excellent luminescence and stability for white LEDs. Chem. Eng. J. 417, 129349 (2021).

24. C.Y. Wang, L.Y. Xu, H.N. Jin, C. Li, Z. Zhang, L.Y. Li, Y.B. Chen, J. Su, N.S. Liu, J.J. Lai*, F. Long, X.L. Jiang & Y.H. Gao*. Yb/Er coordinatively doping in bilayer WSe2 for fascinating up-conversion luminescence. Nano Energy 78, 105317 (2020).

23. F. Cheng, L.Y. Lian, L.Y. Li*, J.Y. Rao, C. Li, T.Y. Qi, Y.F. Cheng, Z. Zhang, J.B. Zhang, J.B. Wang & Y.H. Gao*. Sublimation and related thermal stability of PbSe nanocrystals with effective size control evidenced by in situ transmission electron microscopy. Nano Energy 75, 104816 (2020).

22. Y.N. Zhang, Z. Zhang*, Y.F. Cheng, F. Cheng, L.F. Wang, N.S. Liu, L.Y. Li, J. Su & Y.H. Gao*. In situ TEM observation of controlled growth of two-dimensional WS2 with vertically aligned layers and high-temperature stability. Nano Energy 67, 104221(2020).

21. Y.F. Cheng, Y.N. Ma, L.Y. Li*, M. Zhu, Y. Yue, W.J. Liu, L.F. Wang, S.F. Jia, C. Li, T.Y. Qi, J.B. Wang & Y.H. Gao*. Bioinspired Microspines for a High-Performance Spray Ti3C2Tx MXene-Based Piezoresistive Sensor. ACS Nano 14, 2145-2155 (2020).

20. C.X. Yang, W.J. Liu, N.S. Liu, J. Su, L.Y. Li, L. Xiong, F. Long, Z.G. Zou &  Y.H. Gao*. Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Appl. Mater. & Interfaces 11, 33165-33172 (2019).

19. Z. Zhang, N.S. Liu, L.Y. Li, J. Su, Y.H. Gao* & J. Zou*. In-Situ TEM Observation of Crystal Structure Transformation in InAs Nanowires at atomic scale. Nano Lett. 18, 6597−6603 (2018).

18. J.Y. Rao, N.S. Liu, Z. Zhang, J. Su, L.Y. Li, L. Xiong & Y.H. Gao*. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 51, 425-433 (2018).

17. Y. Yue, Y.N. Ma, N.S. Liu*, S.L. Wang, W.J. Liu, C. Luo, H. Zhang, F. Cheng, J.Y. Rao, X.K. Hu, J. Su & Y.H. Gao*. Highly Self-healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel. ACS Nano 12, 4224−4232 (2018).

16. Y.N. Ma, Y. Yue, H. Zhang, F. Cheng, W.Q. Zhao, J.Y. Rao, S.J. Luo, J. Wang, X.L. Jiang, Z.T. Liu, N.S. Liu & Y.H. Gao*. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano 12, 3209-3216 (2018).

15. C. Luo, N.S. Liu*, H. Zhang, W.J. Liu, Y. Yue, S.L. Wang, J.Y. Rao, C.X. Yang, J. Su, X.L. Jiang & Y.H. Gao*. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer. Nano Energy 41, 527-534 (2017).

14. S.L. Wang, N.S. Liu*, J. Su, L.Y. Li, F. Long, Z.G. Zou, X.L. Jiang & Y.H. Gao*. Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs. ACS Nano 11, 2066-2074 (2017).

13. C.X. Yang, N.S. Liu*, W. Zeng, F. Long, Z.C. Song, J. Su, L.Y. Li, Z.G. Zou, G.J. Fang, L. Xiong & Y.H. Gao*. Superelastic and ultralight electron source from modifying 3D reduced graphene aerogel microstructure. Nano Energy 33, 280-287(2017).

12. S.L. Wang, N.S. Liu*, J.Y. Rao, Y. Yue, K. Gao, J. Su, L.Y. Li, X.L. Jiang, Z.T. Liu & Y.H. Gao*. Vertical finger-like asymmetric supercapacitors for enhanced performance at high mass loading and inner integrated photodetecting systems.  J. Mater. Chem. A 5, 22199-22207(2017).

11. L.Y. Li*, X.K. Hu & Y.H. Gao*. Electron Holographic Study of Semiconductor Light Emitting Diodes. Small 14, 1701996 (2018).

10. N.S. Liu* & Y.H. Gao*. Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture. Small 13,1701989 (2017).

9. W.Q. Zhao, X. Xiong, Y.B. Han, L. Wen, Z.G. Zou, S.J. Luo, H.X. Li, J. Su, T.Y. Zhai & Y.H. Gao*. Fe-Doped p-ZnO Nanostructures/n-GaN Heterojunction for “Blue-Free” Orange Light-Emitting Diodes. Adv. Optical Mater. 5, 1700146 (2017).

8. H.X. Li, N.S. Liu*, X.H. Zhang, J. Su, L.Y. Li, Y.H. Gao* & Z.L. Wang. Piezotronic and piezo-phototronic logic computation using Au decorated ZnO microwires. Nano Energy 27, 587-594 (2016).

7. Y. Yue#, Z.C. Yang#, N.S. Liu*, W.J. Liu, H. Zhang, Y.N. Ma, C.X. Yang, J. Su, L.Y. Li, F. Long, Z.G. Zou & Y.H. Gao*. A Flexible Integrated System Containing a Microsupercapacitor, a Photodetector, and a Wireless Charging Coil. ACS Nano 10, 11249-11257 (2016).

6. H. Zhang, N.S. Liu*, Y.L. Shi, W.J. Liu, Y. Yue, S.L. Wang, Y.N. Ma, L. Wen, L.Y. Li, F. Long, Z.G. Zou & Y.H. Gao*. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Appl. Mater. Interfaces 8, 22374-22381 (2016).

5. X.L. Ren#, X.H. Zhang#, N.S. Liu, L. Wen, L.W. Ding, Z. W. Ma, J. Su, L. Y. Li, J. B. Han & Y. H. Gao*. White Light-Emitting Diode From Sb-Doped p-ZnO Nanowire Arrays/n-GaN Film. Adv. Funct. Mater. 25, 2182-2188 (2015).

4. S.L. Wang, N.S. Liu*, J.Y. Tao, C.X. Yang, W.J. Liu, Y.L. Shi, Y.M. Wang, J. Su, L.Y. Li & Y.H. Gao*. Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3, 2407-2413 (2015).

3. W.J. Liu, N.S. Liu*, Y.L. Shi, Y. Chen, C.X. Yang, J.Y. Tao, S.L. Wang, Y.M. Wang, J. Su, L.Y. Li & Y.H. Gao*. Wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer. J. Mater. Chem. A 3, 13461-13467 (2015).

2. X.H. Zhang, L.Y. Li, J. Su, Y.M. Wang, Y.L. Shi, X.L. Ren, N.S. Liu, A.Q. Zhang, J. Zhou & Y.H. Gao*. Bandgap Engineering of GaxZn1-xO Nanowire Arrays for Wavelength-tunable Light-emitting Diodes. Laser Photonics Rev. 8(3), 429-435 (2014).

1. N.S. Liu, J. Li, W. Z. Ma, W. J. Liu, Y. L. Shi, J. Y. Tao, X. H. Zhang, J. Su, L. Y. Li & Y. H. Gao*. Ultrathin and Lightweight 3D Free-Standing Ni@NiO Nanowire Membrane Electrode for a Supercapacitor with Excellent Capacitance Retention at High Rates. ACS Appl. Mater. Interfaces 6 (16), 13627-13634 (2014).


(四)14 SCI papers (5<IF<10), SCI 文章 14篇。累计以上文章共74篇

14. X.T. Fu, Z. Zhang*, Y.F. Zheng, J.N. Lu, S.Y. Cheng, J. Su, H.L. Wei, Y.H. Gao*. Cobalt phosphide/nickel–cobalt phosphide heterostructured hollow nanoflowers for high-performance supercapacitor and overall water splitting. J. Colloid Interface Sci. 653,1272–1282 (2024). JAN.

13. Y.X. Hou, S.Y. Chen, P.F. Ma, K. Mao, J.J. Shi, F. Long, J. Su, Y.N. Ma, Y.H. Gao*. MXene-derived titanic acid with an ultralow-potential as a promising anode for aqueous zinc-ion batteries. J. Alloy. Compd. 938, 168714 (2023). 

12. F. Long#, J.J. Shi#, Q.X. Zhang, Z.Y. Liu, Y.X. Hou, K. Mao, N.S. Liu, L.Y. Li, F. Long* & Y.H. Gao*. Rich 1T-MoS2 Nanoflowers Decorated on Reduced Graphene Oxide Nanosheet for Ultra-quick Zn2+ Storage. Batteries & Supercaps. 2200110 (2022).

11. Y.H. Wu, Z. Zhang*, W.F. Liu, Y.F. Zheng, J. Su, L.Y. Li, N.S. Liu & Y.H. Gao*. Facile synthesis of novel Zn5Mo2O115H2O nanoflowers with excellent rate capability in supercapacitors. J. Power Sources 520, 230816 (2022).

10. C.J. Yi, Y.B. Chen, Z. Kang, Y.N. Ma, Y. Yue, W.J. Liu, M. Zhu & Y.H. Gao*. MXene-GaN van der Waals Heterostructures for High-Speed Self-Driven Photodetectors and Light-Emitting Diodes. Adv. Electron. Mater. 7, 2000955 (2021).

9. L.W. Zhang#, Y.N. Liu#, Z.S. Gan, J. Su & Y.H. Gao*. In situ localized formation of cesium lead bromide nanocomposites for fluorescence micro-patterning technology achieved by organic solvent polymerization. J. Mater. Chem. C 8, 3409-3417 (2020).

8. M. Zhu, Y. Yue, Y.F. Cheng, Y.N. Zhang, J. Su, F. Long, X.L. Jiang, Y.N. Ma & Y.H. Gao*. Hollow MXene Sphere/Reduced Graphene Aerogel Composites for Piezoresistive Sensor with Ultra-High Sensitivity. Adv. Electron. Mater. 6, 1901064 (2019).

7. C.Y. Wang, Z. Kang, Z. Zheng, Y.N. Zhang, L.W. Zhang, J. Su, Z. Zhang, N.S. Liu, L.Y.  Li & Y.H. Gao*. Monolayer MoSe2/NiO van der Waals heterostructures for infrared light-emitting diodes. J. Mater. Chem. C 7, 13613-13621 (2019). 

6. Z.Y. Chen, Z. Kang, C.P. Rao, Y.F. Cheng, N.S. Liu, Z. Zhang, L.Y. Li & Y.H. Gao*. Improving Performance of Hybrid Graphene-perovskite Photodetector by a Scratch Channel. Adv. Electron. Mater. 5, 1900168 (2019).

5. J.W. Yu#, Y.N. Ma#, C.X. Yang, H. Zhang, L.J. Liu*, J. Su* & Y.H. Gao*. SERS-active composite based on rGO and Au/Ag core-shell nanorodsfor analytical applications. Sens. Actuators B-Chem. 254, 182-188 (2018).

4. Z. Kang#, Y.N. Ma#, X.Y. Tan#, M. Zhu, Z. Zheng, N.S. Liu, L.Y. Li, Z.G. Zou, X.L. Jiang, T.Y. Zhai* & Y.H. Gao*. MXene–Silicon Van Der Waals Heterostructures for High-Speed Self-Driven Photodetectors. Adv. Electron. Mater. 3, 1700165 (2017).

3. J. Wen, S.Z. Li, T. Chen, Y. Yue, N.S. Liu, Y.H. Gao*, B.R. Li, Z.C. Song, L.B. Xiong, Z. Chen, Y. X. Guo, R. Xiong* & G. J. Fang*. Three-dimensional hierarchical NiCo hydroxide@Ni3S2 nanorod hybrid structure as high performance positive material for asymmetric supercapacitor. Electrochim. Acta 222, 965-975 (2016).

2. J.Y. Tao, N.S. Liu*, J.Y. Rao, L.W. Ding, M. R. AL Bahrani, L.Y. Li, J. Su and Y.H. Gao*. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage. Nanoscale 6, 15073-15079 (2014).

1. J.Y. Tao, N.S. Liu*, L.Y. Li, J. Su & Y.H. Gao*. Hierarchical Nanostructures of Polypyrrole@ MnO2 Composite Electrodes for High Performance Solid-State Asymmetric Supercapacitors.   Nanoscale 6 (5), 2922-2928 (2014).


(五)66 SCI papers (IF<5) 影响因子小于5SCI文章66篇。累计以上文章共140

66. 高义华,鲁周超,李文川. 阿基米德原理与浮力赝势能——在重力势能章节引入浮力之本质解释,物理 402-404 (2021)

65. H.N. Jin#, Y.B. Chen#, L.W. Zhang, R. Wan, Z.G. Zou, H.X. Li & Y.H. Gao*. Positive Photoconductivity and Negative Photoconductivity Characteristics in CsPbBr3/Graphene Heterojunction. Nanotechnology 32, 085202 (2021). 

64.  J.L. An, Y.N. Ma*, M.Q. He, J.F. Yan, C.K. Zhang, X.X. Li, P.Z. Shen, S.J. Luo & Y.H. Gao*. A Wearable and Highly Sensitive Textile-based Pressure Sensor with Ti3C2Tx Nanosheets. Sensor. Actuat. A-Phys. 311, 112081 (2020). 

63. X.X. Li, Y.N. Ma*, P.Z. Shen, C.K. Zhang, J.F. Yan, Y.B. Xia, S.J. Luo & Y.H. Gao*. Self-Healing Microsupercapacitors with Size-Dependent 2D MXene. Chem. Electro. Chem. 7, 821-829 (2020).

62. Y.N. Ma, Y.F. Liu, C.X. Yu, C.K. Zhang, S.J. Luo* & Y.H. Gao*. Monolayer Ti3C2Tx, Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property. J. Inorg. Mater. 35, 93-98 (2020).

61. L.W. Zhang, L. Xu, M. Zhu, C. Li, L.Y. Li, J. Su & Y.H. Gao*. Pink all-inorganic halide perovskite nanocrystals with adjustable characteristics: Fully reversible cation exchange, improving the stability of dopant emission and light-emitting diode application. J. Alloy. Compd. 818, 159213 (2020).

60. Z. Kang, Z. Zheng, J.Y. Rao, F. Cheng, H.L. Wei, Z. Zhang, X.Y. Tan*, L. Xiong, T. Zhai & Y.H. Gao*. Controlled Growth of an Mo2C-Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C-Graphene/Sb2S0.42Se2.58/ TiO2 Photodetectors. Sensors 19, 1099 (2019).

59. K.F. Gao, S.L. Wang, W.J. Liu, Y. Yue, J.Y. Rao, J. Su, L.Y. Li, Z. Zhang, N.S. Liu, L. Xiong, Y.H. Gao*. All fiber based electrochemical capacitor towards  wearable AC line filter with outstanding rate capability. Chem. Electro. Chem. 6, 1450–1457 (2019).

58. H.X. Li, W.Q. Zhao, Y. Liu, Y. Liang, L. Ma, M. Zhu, C.J. Yi, L. Xiong* & Y.H. Gao*. High-level-Fe-doped P-type ZnO Nanowire Array/n-GaN Film for Ultraviolet-free White Light-emitting Diodes. Mater. Lett. 239, 45–47 (2019).

57. L.W. Zhang, S. L. Shen, L.Y. Li, Z. Zhang, N.S. Liu & Y.H. Gao*. Application and Development of Cesium Lead Halide Perovskite Based Planar Heterojunction LEDs. J. Inorg. Mater. 34, 37-48 (2019).

56. W.K. Jing, N. Ding, L.Y. Li*, F. Jiang, X. Xiong, N.S. Liu, T.Y. Zhai Y.H. Gao*. Ag nanoparticles modified large area monolayer MoSphototransistors with high responsivity. Opt. Express 25, 14565-14574 (2017).

55. J.Y. Rao, N.S. Liu, L.Y. Li, J. Su, F. Long, Z.G. Zou* & Y.H. Gao*. A high performance wire-shaped flexible lithiumion battery based on silicon nanoparticles within polypyrrole/ twisted carbon fibers. RSC Adv. 7, 26601 (2017).

54. W. Ahmad, M.R. Al-bahrani, Z.C. Yang, J. Khan, W.K. Jing, F. Jiang, L. Chu, N.S. Liu, L.Y. Li & Y.H. Gao*.  Extraction of nano-silicon with activated carbons simultaneously from rice husk and their synergistic catalytic effect in counter electrodes of dye-sensitized solar cells. Sci. Rep. 6, 39314 (2016).

53. L. Wen, N.S. Liu, S.L. Wang, H. Zhang, W.Q. Zhao, Z.C. Yang, Y.M. Wang, J. Su, L.Y. Li, F. Long, Z.G. Zou & Y.H. Gao*. Enhancing light emission in flexible AC electroluminescent devices by tetrapod-like zinc oxide whiskers. Opt. Express 24, 23419-23428 (2016).

52.  Z.C. Yang, W. Ahmad, L. Chu, M.R. Al-bahrani, F.F. Tu, Y.M. Wang, H. Zhang, X. Wang, J. Su, N.S. Liu, L.Y. Li, C.P. Yang & Y.H. Gao*. Three-dimensional nanocomposite formed by hydrophobic multiwalled carbon nanotubes threading titanium dioxide as the counter electrode of enhanced performance dye-sensitized solar cells. RSC Adv. 6, 55071-55078 (2016).

51. Y. M. Wang, Y. B.  Han, J. B. Han, X. H. Zhang, Y. Chen, S. L. Wang, L. Wen, N. S. Liu, J. Su, L.Y. Li & Y. H. Gao*. UV-free red electroluminescence from the cross-connected p-ZnO:Cu nanobushes/n-GaN light emitting diode. Opt. Express 24(4), 3940-3949 (2016).

50. Y. M. Wang, N.S. Liu, Y. Chen, C.X. Yang, W.J. Liu, J. Su, L.Y. Li & Y.H. Gao*.  Multicolor Electroluminescences from Light Emitting Diode Based on ZnO:Cu/p-GaN Heterojunction at Positive and Reverse Bias Voltage. RSC Adv. 5, 104386-104391(2015).

49. M. R. Al-bahrani, A. Waqar, S. S. Ruan, Z.C. Yang, Z. Cheng & Y.H. Gao*. Layer-by-layer deposition of CNT- and CNT+ hybrid films for platinum free counters electrodes of dye-sensitized-solar-cells. RSC Adv. 5, 95551 (2015).

48. H.X. Li, X.H. Zhang, N.S. Liu*, L.W. Ding, J.Y. Tao, S.L. Wang, J. Su, L.Y. Li & Y.H. Gao*. Enhanced photo-response properties of a single ZnO microwire photodetector by coupling effect between localized Schottky barriers and piezoelectric potential. Opt. Express 23(16), 21204 (2015).

47. Y. Chen, Y.L. Huang, N.S. Liu, J. Su, L.Y. Li* & Y.H. Gao*Fabrication of nanoscale Ga balls via a Coulomb explosion of microscale silica-covered Ga balls by TEM electron-beam irradiation. Sci. Rep. 5, 11313 (2015).

46. C.X. Yang, Y.L. Shi, N.S. Liu*, J.Y. Tao, S.L. Wang, W.J. Liu, Y.M. Wang, J. Su, L.Y. Li, C.P. Yang & Y.H. Gao*. Freestanding and flexible graphene wrapped MnO2/MoO3 nanoparticle based asymmetric supercapacitors for high energy density and output voltage. RSC Adv. 5(56), 45129-45135 (2015).

45. W. Ahmad, L. Chu, M. R. Al-bahrani, Z.C. Yang, S.L. Wang, L. Y. Li & Y. H. Gao*. Formation of short three dimensional porous assemblies of super hydrophobic acetylene black intertwined by copper oxide nanorods for a robust counter electrode of DSSCs. RSC Adv. 5, 35635-35642 (2015).

44. W. Ahmad, L. Chu, M. R. Al Bahrani, X. L. Ren, J. Su & Y.H. Gao*. P-type NiO nanoparticles enhanced acetylene black as efficient counter electrode for dye-sensitized solar cells. Mater. Res. Bull. 67, 185-190 (2015).

43. L. Chu, J. Su, W. Ahmad, N.S. Liu, L.Y. Li & Y.H. Gao*. Facile, rapid and in-situ synthesis of ZnO nanopaticle films on Zn wires for fiber dye-sensitized solar cells. Mater. Res. Bull. 66, 244-248 (2015).

42. M.R. Al-Bahrani, L. F. Liu, W. Ahmad, J.Y.Tao, F. F. Tu, Z. Cheng & Y. H. Gao*NiO-NF/ MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl. Surf. Sci. 331, 333-338 (2015).

41. S.L. Wang, N.S. Liu*, C.X. Yang, W.J. Liu, J. Su, L.Y. Li, C.P. Yang & Y.H. Gao*. Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Adv. 5(104), 85799-85805 (2015).

40. Y. Liu, X.H Zhang, J. Su, H.X. Li, Q. Zhang & Y.H. Gao*. Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector. Opt. Express 22, 30148-30153 (2014).

39. M.R. Al Bahrani, X.B. Xu, W. Ahmad, X.L. Ren, J. Su, Z. Cheng & Y.H. Gao*. Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode. Mater. Res. Bull. 59, 272-277(2014).

38. D. Liu, H. Liu, J. Hou & Y.H. Gao*High extraction efficiency in GaN-based light-emitting diodes with air-hole photonic crystal slab. Mod. Phys. Lett. B 28 (21), 1450173 (2014).

37. L. Chu, L.Y. Li, J. Su, F.F. Tu, N.S. Liu & Y.H. Gao*. A General Method for Preparing Anatase TiO2 Treelike-Nanoarrays on Various Metal Wires for Fiber Dye-Sensitized Solar Cells. Sci. Rep. 4, 4420 (2014).

36. J.X. Chen, L.W. Ding, X. H. Zhang, L. Chu, N. S. Liu & Y. H. Gao*. Strain-enhanced cable- type 3D UV photodetecting of ZnO nanowires on a Ni wire by coupling of piezotronics effect and pn junction. Opt. Express 22 (3), 3661-3668 (2014).

35. L. Chu, L.Y.  Li, W. Ahmad, Z. Wang, X.L. Xie, J.Y. Rao, N.S. Liu, J. Su & Y.H. Gao*. Bandgap-Graded ZnO/(CdS)1-x(ZnS)x Coaxial Nanowire Arrays for Semiconductor-Sensitized Solar Cells. Mater. Res. Express 1, 015021 (2014).

34. H. Liu, D. Liu, H. Zhao & Y.H. Gao*. Study on complete photonic band gaps of two-dimensional air annular photonic crystalsActa Phys. Sin. 62 (19), 194208 (2013).

33. J.Y. Tao, N.S. Liu*, W.Z. Ma, L.W. Ding, L.Y. Li, J. Su & Y.H. Gao*. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure. Sci. Rep. 3, 02286 (2013).

32. D. Liu, H. Liu & Y.H. Gao*. Photonic band gaps in square photonic crystal slabs of core–shell-type dielectric nanorod heterostructures. Solid State Commun. 172, 10-14 (2013).

31. H. Liu, H. Zhao, J. Hou, D. Liu & Y.H. Gao*. Enhanced light extraction in AlInGaN UV light-emitting diodes by embedded AlN/AlGaN distributed Bragg reflector. Chin. Phys. Lett. 29(10), 108501 (2012).

30. Q. Zhang, J. Su, X.H. Zhang, J. Li, A.Q. Zhang & Y.H. Gao*. Bi2Se3/CdS/TiO2 hybrid photoelectrode and its band-edge levels. J. Alloy. Compd. 545, 105–110 (2012).

29. N.S. Liu#, W.W. Tian#, X.H. Zhang, J. Su, Q. Zhang & Y.H. Gao*. Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction. Opt. Express 20, 20748 (2012).

28. Y. Fu, M. Sun, W.W. Tian, J.B. Wang, Y.H. Gao*. Melting, expansion behavior and electric transport of In-filling in MgO nanotubes. J. Nanosci. Naotechnol. 12(3), 2718-2721(2012).

27. J. Su, Y.H. Gao*, M. Sun, X.Y. Han, X.H. Zhang & Q. Zhang. Fe- and Fe3C-filled carbon nanotube aligned arrays and flower-like carbon nanostructured clusters with a high coercivity. Micro Nano Lett. 7(3), 271–274 (2012).

26. X.H. Zhang, X.Y. Han, J. Su, T.C. Peng, X.H. Xiao & Y.H. Gao*. Well vertically aligned ZnO nanowire arrays with a short reset time for UV photodetecting. Appl. Phys. A-Mater. 107(2), 255-260 (2012).

25. M. Sun & Y.H. Gao*. Electrically-Driven Gallium Movement in Carbon Nanotubes. Nanotechnology 23, 065704 (2012).

24. D. Liu, Y.H. Gao*, D.S. Gao & X.Y. Han. Photonic band gaps in two-dimensional photonic crystals of core-shell-type dielectric nanorod heterostructures. Opt. Commun. 285, 1988-1992 (2012).

23. Q. Zhang, J. Su, X.H. Zhang, J. Li, A.Q. Zhang & Y. H. Gao*. Chemical Vapor Deposition of PbSe/CdS/Nitrogen doped TiO2 nanorod arrays photoelectrode and an investigation of its band edge structure. New J. Chem. 36 (11), 2302-2307 (2012).

22. Y.H. Gao*, M. Sun, J. Su, C. Y. Zhi, D. Golberg, Y. Bando & X. F. Duan. Electron-beam induced electric-hydraulic expansion in a silica shelled gallium microball-nanotube structure. Appl. Phys. Lett. 99, 083112 (2011).

21. M. Sun, Y.H. Gao*, C.Y. Zhi, Y. Bando & D. Golberg. Silicon multi-branch nanostructures for decent field emission and excellent electrical transport. Nanotechnology 22, 145705 (2011).

20. M. Sun, Y.H. Gao*, J. Su, X.Y. Han, X.H. Zhang, Q. Zhang, G.Z. Shen, A.Q. Zhang, L. Jin & J.B. Wang. Versatile Route to the Controlled Synthesis of Multilevel Branched Silicon Submicrometer/Nanostructures. J. Phys. Chem. C 114, 134 (2010).

19. D.G. Xiang, J. Su, A.Q. Zhang, Y.H. Gao*, X.Y. Han, M. Sun, X.H. Zhang, G.Z. Shen, D. Chen, L. Jin & J.B. Wang. Microstructure and Photoluminescence Studies of Sb-Doped SnO Zigzag Nanobelts. J. Nanosci. Nanotechno. 10, 6629 (2010).

18. X.Y. Han, Y.H. Gao*, J.N. Dai, C.H. Yu, Z.H. Wu, C.Q. Chen & G.J. Fang. Nonpolar a-plane ZnO films grown on GaN/sapphire templates with SiNx interlayer by pulsed laser deposition. J. Phys. D Appl. Phys. 43, 145102 (2010).

17. X.Y. Han, J.N. Dai, C.H. Yu, Z.H. Wu, C.Q. Chen & Y. H. Gao*. Characterization of a-plane orientation ZnO film grown on GaN/Sapphire template by pulsed laser deposition. Appl. Surf. Sci. 256, 4682 (2010).

16. J. Su, Y.L. Huang, X.H. Zhang, M. Sun & Y.H. Gao*. Ga filled nanothermometers with high sensitivity and wide measuring range. J. Nanosci. Nanotechnol. 12(8), 6397 (2012).

15Y. H. Gao, Y. Bando, Z. Liu, D. Golberg H. Nakanishi. Temperature Measurement Using A Galium-Filled Carbon Nanotube Thermometer. Appl. Phys. Lett. 83, 2913 (2003).

14Y.H. Gao*, Y. Bando & D. GolbergMelting and Expansion Behavior of Indium in Carbon Nanotubes. Appl. Phys. Lett. 81, 4133 (2002).

13Y.H. Gao& Y. Bando. Nano-Thermodynamic Analysis of Surface Effect on Expansion Characteristics of Ga in Carbon Nanotubes. Appl. Phys. Lett. 81, 3966 (2002).

12. Y.H. Gao*, Y. Bando, T. Sato, Y. F. Zhang & X. Q. GaoSynthesis, Raman scattering and defects of Ga2O3 nanorods. Appl. Phys. Lett. 81, 2267(2002).

11. Y.H. Gao*, Y. Bando, K. Kurashima & T. Sato. SiC nanorods prepared from SiO and activated carbon. J. Mater. Sci. 37, 2023 (2002).

10. Y.H. Gao*, Y. Bando, K. Kurashima & T. Sato. Si3N4/SiC interface structure in SiC-nanocrystal-embedded alpha-Si3N4 nanorods. J. Appl. Phys. 91, 1515 (2002).

9. Y.H. Gao, Y. Bando, K. Kurashima & T. Sato. Synthesis and microstructural analysis of Si3N4 nanorods. Microsc. Microanal. 8, 5-10 (2002).

8. Y.H. Gao*, Y. Bando & T.Sato. Nanobelts of the dielectric material Ge3N4Appl. Phys. Lett. 79, 4565 (2001).

7. Y.H. Gao, Y. Bando, K. Kurashima & T. Sato. The microstructural analysis of SiC nanorods synthesized through carbothermal reduction. Scripta Mater. 44(8-9), 1941 (2001).

6. Y.H. Gao*, Y. Bando, T. Sato & Y. Kitami. Needle-Like SiC Nanorods. Jpn. J. Appl. Phys. 40, L1065-1067 (2001).

5. Y.H. Gao, Y. Bando, K. Kurashima & T. Sato. The microstructural analysis of SiC nanorods by high-resolution electron microscopy. J. Electron Microsc. 49, 641 (2000).

4. Y.H. Gao, Z. Zhang, M.L. Yan & W.Y. Lai. HREM Study of the interfacial structure of NiFe/Mo magnetic multilayers. ACTA PHYSICA SINICA 47, 765 (1998).

3. Y.H. Gao, Z. Zhang, L. S. Liao & X. M. Bao. A high-resolution microscopy study of blue-light emitting beta-SiC nano-particles in C+-implanted silicon. J. Mater. Res. 12, 1640 (1997).

2. Y.H. Gao, N. Tang, X.P. Zhong, J.L. Wang, W.Z. Li, W.D. Qin, F.M. Yang, D.M. Zhang & F.R. DeBoer.  Magnetic interactions in R2(Fe1-xGax)17 compounds (R=Dy, Y). J. Magn. Magn. Mater. 137, 275 (1994).

1. Y.H. Gao, D.M. Zhang, C.Q. Tang, B.M. Yu and W.D. Qin, N. Tang, Z.H. Lu & F.M. Yang. Model for calculating Tc of pluralistic magnetic component compounds. J. Appl. Phys. 76, 7456 (1994).

 

(六)54 Group's SCI papers 团队SCI文章54篇。累计以上文章共194

54. P.X. Jia, Q.X. Zhang, Z.Q. Ren, J.Y. Yin, D.D. Lei, W.Z. Lu, Q.Q. Yao, M.F. Deng, Y.H. Gao, N.S. Liu*. Self-powered flexible battery pressure sensor based on gelatin. Chem. Engineer. J. 479, 147586 (2024).

53. P.X. Jia, Q.X. Zhang, Z.Q. Ren, J.Y. Yin, D.D. Lei, W.Z. Lu, Q.Q. Yao, M.F. Deng, Y.H. Gao, N.S. Liu*. Self-powered flexible battery pressure sensor based on gelatin. Chem. Engineer. J. 479, 147586 (2024).

52. J.Y. Yin, N.S. Liu*, P.X. Jia, Z.Q. Ren, Q.X. Zhang, W.Z. Lu, Q.Q. Yao, M.F. Deng, Y.H. Gao. MXene-enhanced environmentally stable organohydrogel ionic diode toward harvesting ultralow-frequency mechanical energy and moisture energy. Sus Mat. 1–18 (2023).

51. Y.F. Cheng, Y.M. Xie, H.H. Cao, L. Li, Z.Y. Liu, S.W. Yan, Y.N. Ma, W.J. Liu, Y. Yue*, J.B.  Wang, Y.H. Gao, L.Y. Li*. High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor. Chem. Engineer. J. 453, 139823 (2023).

50. Z.Y. Liu, C.Y. Zhao, S.F. Jia, W.W. Meng, P. Li, S.W. Yan, Y.F. Cheng, J.S. Miao, L. Zhang, Y.H. Gao, J.B. Wang, L.Y. Li. Study of the growth mechanism of a self‑assembled and ordered multi‑dimensional heterojunction at atomic resolution. Frontiers of Optoelectronics (2023) 16:35; https://doi.org/10.1007/s12200-023-00091-2.

49. W.F. Liu, Z. Zhang*, XT. Fu, Y.F. Zheng, X.Y. Li, Q.W. He, N. Wang, J. Su, and Y.H. Gao. Construction of Three-Dimensional Co(PO3)2/Cu3P Heterostructure for High-Rate Supercapacitors. ACS Appl. Energy Mater. 6, 2945−2953 (2023).

48. Q.X. Zhang, D.D. Lei, J.J. Shi, Z.Q. Ren, J.Y. Yin, P.X. Jia, W.Z. Lu, Y.H. Gao, N.S. Liu*. Pressure-Regulated Nanoconfined Channels for Highly Effective Mechanical–Electrical Conver-sion in Proton Battery-Type Self-Powered Pressure Sensor. Adv. Mater. 2308795 (2023). NOV.

47. Z.Q. Ren, N.S. Liu*, Q.X. Zhang, J.Y. Yin, P.X. Jia, W.Z. Lu, Q.Q. Yao, M.F. Deng, and Y.H. Gao. Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. Adv. Sensor Res. 2, 2200099 (2023).

46. Y.H. Wu, W.F. Liu, Z. Zhang*, Y.F. Zheng, X.T. Fu, J.N. Lu, S.Y. Cheng, J. Su, Y.H. Gao. Defect-Rich MoO3 Nanobelts for ultrafast and wide-temperature proton battery. Energy Storage Materials 61, 102849 (2023).

45. Z.Q. Ren, N.S. Liu*, Q.X. Zhang, J.Y. Yin, P.X. Jia, W.Z. Lu, Q.Q. Yao, M.F. Deng, Y.H. Gao. Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. Adv. Sensor Res. 2023, 2200099.

44. Y.F. Cheng, Y.M. Xie, Z.Y. Liu, S.W. Yan, Y.N. Ma, Y. Yue, J.B. Wang, Y.H. Gao, L.Y. Li*. Maximizing Electron Channels Enabled by MXene Aerogel for High-Performance Self-Healable Flexible Electronic Skin. ACS Nano, DOI10.1021/acsnano.2c09933. 在线发表JAN 2023; 已索引2023-02-14

43. Y. Yue, N.S. Liu*, T.Y. Su, Y.F. Cheng, W.J. Liu, WJ, D.D. Lei, F. Cheng, B.H. Ge, Y.H. Gao. Self-Powered Nanofluidic Pressure Sensor with a Linear Transfer Mechanism. Adv. Funct. Mater. 2211613 (2022). DOI 10.1002/adfm.202211613. 在线发表 JAN 2023.

42. D.D. Lei, Q.X. Zhang, N.S. Liu*, Z.Y. Liu, T.Y. Su, L.X. Wang, Z.Q. Ren, P.X. Jia, W.Z. Lu, Y.H. Gao. Flexible battery-type pressure sensor enhanced with locked water by calcium ion in graphene oxide solid electrolyte. Cell Rep. Phys. Sci. 3(9), 101050 (2022). doi: 10.1016/j.xcrp.2022.101050.

41. Y.F. Cheng, Y.M. Xie, S.W. Yan, Z.Y. Liu, Y.N. Ma, Y. Yue*, J.B. Wang, Y.H. Gao, L.Y. Li*. Maximizing the ion accessibility and high mechanical strength in nanoscale ion channel MXene electrodes for high-capacity zinc-ion energy storage. Science Bulletin https://doi.org/10.1016/j.scib.2022.10.003

40. Y.F. Cheng, Y.M. Xie, H.H. Cao, L. Li, Z.Y. Liu, S.W. Yan, Y.N. Ma, W.J. Liu, Y. Yue*, J.B. Wang, Y.H. Gao, L.Y. Li*. High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor. Chem. Eng. J. 453, 139823 (2023)

39. Y.F. Zheng, Z. Zhang*, W.F. Liu, Y.H. Wu, X.T. Fu, L.Y. Li, J. Su, N.S. Liu, Y.H. Gao. Unveiling the Na-ions storage mechanism and sodiation-induced brittleness of multiwalled carbon nanotubes. J. Power Sources 532, 231357 (2022)

38. T.Y. Su, N.S. Liu*, D.D. Lei, L.X. Wang, Z.Q. Ren, Q.X. Zhang, J. Su, Z. Zhang, Y.H. Gao. Mechanism Flexible MXene/Bacterial Cellulose Film Sound Detector Based on Piezoresistive Sensing Mechanism. ACS Nano 16(5), 8461−8471 (2022). DOI: 10.1021/acsnano.2c03155; 出版时间MAY 24 2022; 在线发表MAY 2022.

37. L.Y. Li, Y.F. Cheng, Z.Y. Liu, S.W. Yan, L. Li, J.B. Wang, L. Zhang, Y.H. Gao. Study of structure-property relationship of semiconductor nanomaterials by off-axis electron holography. Journal of Semiconductor (半导体学报) 43(4), 041103b (2022). DOI: 10.1088/1674-4926/43/4/041103; 出版时间APR 1 2022.

36. W.F. Liu#, H.X. Gao#, Z. Zhang*, Y.F. Zheng, Y.H. Wu, X.T. Fu, J. Su, Y.H. Gao. CoP/Cu3P heterostructured nanoplates for high-rate supercapacitor electrodes. Chem. Eng. J. 437, 135352 (2022).

35. W.F. Liu, Z. Zhang*, J.J. Shi, Y.F. Zheng, Y.H. Wu, X.T. Fu, N.S. Liu, J. Su & Y.H. Gao. A “one-for-three” strategy through a facile one step hydrothermal engineering of commercial MoO3 for high-performance proton storage. J. Mater. Chem. A 10(8), 4043-4052 (2022).

34. L. Li, H.H. Cao, Z.S. Liang, Y.F. Cheng, T.T. Yin, Z.Y. Liu, S.W. Yan, S.F. Jia, L.Y. Li, J.B. Wang & Y.H. Gao. First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors. ACS Appl. Nano Mater. 2022, 10.1021/acsanm.1c04158.

33. W.F. Liu, Y.F. Zheng, Z. Zhang, Y.N. Zhang, Y.H. Wu, H.X. Gao, J. Su & Y.H. Gao. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. J. Power Sources 521, 230965 (2022).

32. L. Li, Y.F. Cheng*, H.H. Cao, Z.S. Liang, Z.Y. Liu, S.W. Yan, L.Y. Li*, S.F. Jia, J.B. Wang & Y.H. Gao. MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022).

31. D.D. Lei, Q.X. Zhang, N.S. Liu*, T.Y. Su, L.X. Wang, Z.Q. Ren, Z. Zhang, J. Su & Y.H. Gao. Self-Powered Graphene Oxide Humidity Sensor Based on Potentiometric Humidity Transduction Mechanism. Adv. Funct. Mater. 32(10), 2107330 (2021).

30. D.D. Lei, Q.X. Zhang, N.S. Liu*, T.Y. Su, L.X. Wang, Z.Q. Ren & Y.H. Gao. An Ion Channel-Induced Self-Powered Flexible Pressure Sensor Based on Potentiometric Transduction Mechanism. Adv. Funct. Mater. 32(5), 2108856 (2021).

29. D.D. Lei, H. Zhang, N.S. Liu*, Q.X. Zhang, T.Y. Su, L.X. Wang, Z.Q. Ren, Z. Zhang, J. Su & Y.H. Gao. Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nanotubes/Ag nanoparticles. Nanotechnology 32, 505509 (2021).

28. T.Y. Su, N.S. Liu*, Y.H. Gao, D.D. Lei, L.X. Wang, Z.Q. Ren, Q.X. Zhang, J. Su & Z. Zhang. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021).

27. W.J. Liu, Y.F. Cheng, N.S. Liu*, Y. Yue, D.D. Lei, T.Y. Su, M. Zhu, Z. Zhang, W. Zeng, H.Z. Guo & Y.H. Gao. Bionic MXene actuator with multiresponsive modes. Chem. Eng. J. 417, 129288 (2021).

26. C. Li, L. Zhang, T. Gong, Y.F. Cheng, L.Y. Li*, Li Li, S.F. Jia, Y.J. Qi, J.B. Wang & Y.H. Gao. Study of the Growth Mechanism of Solution-Synthesized Symmetric Tellurium Nanoflakes at Atomic Resolution. Small 17, 2005801 (2021).

25. Y.F. Cheng, L. Li, L.Y. Li*, Y.N. Zhang, L.X. Wang, L.F. Wang, Z. Zhang & Y.H. Gao. Linear regulation of electrical characteristics of InSe/Antimonene heterojunction via external electric field and strain. Surf. Interfaces 23, 101014 (2021).

24. Y.N. Zhang, Z. Zhang*, W.F. Liu, L. Li, H.N. Jin, Y.F. Zheng, J. Su, N.S. Liu & Y.H. Gao. In Situ TEM Investigations on the Controlled Phase Transformation of Vertically Aligned WS2 at Designated Locations on an Atomic Scale. J. Phys. Chem. C 125(4), 2761-2769 (2021).

23. L.Y. Li*, X.K. Hu, L. Jin, Y.H. He, S.F. Jia, H.P. Sheng, Y.F. Cheng, L. Li, Z. Wang, H.S. Gu, Y.L. Zhu, J.B. Wang & Y.H. Gao. Atomic scale study of the oxygen annealing effect on piezoelectricity enhancement of (K,Na)NbO3 nanorods. J. Mater. Chem. C 8, 15830-15838 (2020).

22. D.D. Lei, N.S. Liu*, T.Y. Su, L.X. Wang, J. Su, Z. Zhang & Y.H. Gao. Research progress of MXenes-based wearable pressure sensors. APL Mater. 8, 110702 (2020).

21. T.Y. Qi, Y.F. Cheng, F. Cheng, L.Y. Li*, C. Li, S.F. Jia, X. Yan, X. Zhang, J.B. Wang & Y.H. Gao. Study of nanometer-scale structures and electrostatic properties of InAs quantum dots decorating GaAs/AlAs core/shell nanowires. Nanotechnology 31, 245701(2020).

20. L.F. Wang, Z. Zhang*, Y.F. Cheng, Y.N. Zhang, W.F. Liu, J. Su, N.S. Liu & Y.H. Gao. Revealing the Phase-Transition Dynamics and Mechanism in a Spinel Li4Ti5O12 Anode Material through in Situ Electron Microscopy. ACS Appl.  Mater. Interfaces 12, 20874-20881(2020).

19. Y.N. Zhang, Z. Zhang*, W.F. Liu, L.F. Wang, Y.F. Zheng, J. Su, N.S. Liu & Y.H. Gao. Unveiling the Nucleation Dynamics and Growth Mechanism of Layered MoS2 from Crystalline K2MoS4 by in Situ Transmission Electron Microscopy. Cryst. Growth Des. 20, 4069-4076 (2020).

18. F. Cheng, B. Li, L.Y. Li*, X. Wang, S.L. Shen, W.J. Liu, H. Zheng, S.F. Jia, X. Yan, X. Zhang, J.B. Wang & Y.H. Gao. Study of the Polarization Effect in InAs Quantum Dots/GaAs Nanowires. J. Phys. Chem. C 123, 4228-4234 (2019)

17. C. Li, Y.F. Cheng, B. Li, F. Cheng, L.Y. Li, T.Y. Qi, S.F. Jia, X. Yan, X. Zhang, J.B. Wang & Y.H. GaoStudy of Charge Distributions and Electrical Properties in GaAs/AlGaAs Single Quantum Well/Nanowire Heterostructures. J. Phys. Chem. C 123, 26888-26894 (2019).

16. L.W. Zhang, S.L. Shen, M. Li, L.Y. Li*, J.B. Zhang, L.W. Fan, F. Cheng, C. Li, M. Zhu, Z. Kang, J. Su, T.Y. Zhai* & Y.H. Gao. Strategies for Air-Stable and Tunable Monolayer MoS2-Based Hybrid Photodetectors with High Performance by Regulating the Fully-Inorganic Trihalide Perovskite Nanocrystals. Adv. Optics. Mater.1801744 (2019). 

15. F. Cheng, L.Y. Lian, L.Y. Li*, J.Y. Rao, C. Li, T.Y. Qi, Z. Zhang, J.B. Zhang* & Y.H. Gao. Hybrid Growth Modes of PbSe Nanocrystals with Oriented Attachment and Grain Boundary Migration. Adv. Sci. 1802202 (2019).

14. Y. Yue, N.S. Liu*, W.J. Liu, M. Li, Y.N. Ma, C. Luo, S. Wang, J.Y. Rao, X.K. Hu, J. Su, Z. Zhang, Q. Huang & Y.H. Gao. 3D hybrid porous xene-sponge network and its application in piezoresistive sensor, Nano Energy 50, 79-87 (2018). 

13. W.J. Liu, N.S. Liu*, Y. Yue, J.Y. Rao, C. Luo, H. Zhang, C.X. Yang, J. Su, Z.T. Liu & Y.H. Gao. A flexible and highly sensitive pressure sensor based on elastic carbon foam. J. Mater. Chem. C 6, 1451-1458 (2018). 

12. W.J. Liu, N.S. Liu*, Y. Yue, J.Y. Rao, F. Cheng, J. Su, Z.T. Liu & Y.H. Gao. Piezoresistive pressure sensor based on synergistical innerconnect PVA nanowires/wrinkled graphene film. Small 14(15), 1704149 (2018). 

11. F. Jiang#, J.W. Chen#, H. Bi, L.Y. Li*, W.K. Jing, J. Zhang, J.N. Dai*, R.C. Che, C.Q. Chen & Y.H. Gao. The underlying micro-mechanism of performance enhancement of non-polar n-ZnO/p-AlGaN ultraviolet light emitting diode with i-ZnO inserted layer. Appl. Phys. Lett. 112, 033505 (2018). 

10. J. Su*, Y.H. Gao & R.C. Che. Synthesis and microstructure of Fe3C encapsulated inside chain-likecarbon nanocapsules. Mater. Lett. 64, 680 (2010). 

9. Y.H. Liu, M.L. Hu, M. Zhang, L. Peng, H.L. Wei* & Y.H. Gao. Facile method to prepare 3D foam-like MnO2 film/multilayer graphene film/Ni foam hybrid structure for flexible supercapacitors. J. Alloy. Compd. 696, 1159-1167 (2017).

8. M. Zhang, Y.H. Liu, M. L. Hu, H.L. Wei* & Y.H. Gao. Spiral wire-type stretchable all-solid-state supercapacitors based on MnO2/graphene/Ni wires. Electrochim. Acta 256, 44-51 (2017).

7. L.Y. Li*, X.K. Hu, F. Jiang, W.K. Jing, C. Guo, S.F. Jia, Y.H. Gao & J.B. Wang. Atomic-scale analysis of cation ordering in reduced calcium titanate. Sci. Rep. 7, 14977 (2017).

6. L.Y. Li*, F. Jiang, F.F. Tu, S.F. Jia, Y.H. Gao & J.B. Wang*. Atomic-Scale Study of Cation Ordering in Potassium Tungsten Bronze Nanosheets. Adv. Sci. 4, 1600537 (2017).

5. M.L. Hu, Y.H. Liu, M. Zhang, H.L. Wei* & Y.H. Gao. Wire-type MnO2/Multilayer graphene/Ni electrode for highperformance supercapacitors. J. Power Sources 335, 113-120 (2016).

4. M.L. Hu, Y.H. Liu, M. Zhang, H.L. Wei* & Y.H. Gao. MnO2/porous carbon film/Ni electrodes with high-quality interface for high rate and performance flexible supercapacitors. Electrochim. Acta 218, 58-65 (2016).

3. L.Y. Li*, Z.F. Gan, M.R. McCartney, H.S. Liang, H.B. Yu, W.J. Yin, Y.F. Yan, Y.H. Gao, J.B. Wang* & D.J. Smith*. Determination of Polarization-Fields Across Polytype Interfaces in InAs Nanopillars. Adv. Mater. 26, 1052–1057 (2014).

2. L.Y. Li*, F.F. Tu, L.Jin, W.C.H. Choy, Y.H. Gao & J.B. Wang*. Polarity continuation and frustration in ZnSe nanospirals. Sci. Rep. 407447 (2014).

1. L.Y. Li*, Z.F. Gan, M.R. McCartney, H.S. Liang, H.B. Yu, Y.H. Gao, J.B. Wang* & D.J. Smith*. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles. Sci. Rep. 3, 3229 (2013).


三,41 Collaborative SCI Papers 合作文章41 篇。累计以上文章共235篇

41. Z.P. Li*, Y. Zhang, B.B. Zhang, W. Lu, J.L. Li, J. Su, and Y.H. Gao. Tunable Phase Transformation Behavior of Two-Dimensional TiO2 Revealed by In Situ Transmission Electron Microscopy. J. Phys. Chem. C 127, 3640−3646 (2023). https://doi.org/10.1021/acs.jpcc.2c08789

40. L.Y. Xu, J.J. Lai*, S.W. Wang, C.H. Chen, L.R. Huang, C.M. Wang, S.C. Zhong, and Y.H.  Gao. Double-Band Metasurface Infrared Optics for Integrated Multichannel Spectral Sensors. IEEE Sens. J. 23(9), 2023. 1 MAY

39. T.Z. Zhang, H.X. Li, Y.H. Gao, Z.F. Shi, S.P. Zhang*, and H.X. Xu. Extraordinary Five-Wave Mixing in a Zinc Oxide Microwire on a Au Film. Nano Lett. 23, 6966−6972 (2023). https://doi.org/10.1021/acs.nanolett.3c01589.

38. Y. M. Xie, Y.F. Cheng, Y.N. Ma, J. Wang, J.J. Zou, H. Wu, Y. Yue, B.W. Li, Y.H. Gao, X. Zhang,  C.W. Nan. MXene-Based Flexible Network for High-Performance Pressure Sensor with a Wide Temperature Range. Adv. Sci. DOI: 10.1002/advs.202205303. 在线发表 DEC 2022; 已索引2023-01-08.

37. M.J. Wang, Y.F. Cheng, H.Y. Zhang, F. Cheng, Y.X. Wang, T. Huang, Z.Z. Wei, Y.H. Zhang, B.H. Ge, Y.N. Ma, Y. Yue, Y.H. Gao. Nature-Inspired Interconnected Macro/Meso/Micro-Porous MXene Electrode. Adv. Funct. Mater. DOI: 10.1002/adfm.202211199在线发表 JAN 2023; 已索引 2023-01-22.

36. L. Wang, L.Y. Li, S.F. Jia, W.W. Meng, Y.F. Cheng, Z.Y. Liu, L. Li, S.W. Yan, Y.H. Gao, J.B. Wang, J. Tang. Tailoring of Photoluminescence Properties in All-Vacuum Deposited Perovskite via Ruddlesden-Popper Faults. Adv. Funct. Mater. 2022. DOI 10.1002/adfm.202210286.在线发表 DEC 2022 已索引 2023-01-04.

35. F. Cheng, Y.F. Cheng, L.Y. Lian, L.Y. Li, F.Y. Zhang, Y. Yue, S.L. Wang, Z. Zhang, J.B. Zhang, Y.H. Gao. Study of Structural Evolution at Interfaces and Surfaces of PbSe Nanocrystals by In Situ Transmission Electron Microscopy. Adv. Funct. Mater. 32, 2108856 (2022).

34. M. Yang, Y.F. Cheng, Y. Yue, Y. Chen, H. Gao, L. Li, B. Cai, W.J. Liu*, Z.Y. Wang*, H.Z. Guo*, N.S. Liu, Y.H. Gao. High-Performance Flexible Pressure Sensor with a Self-Healing Function for Tactile Feedback. Adv. Sci. 9(20), 2200507 (2022). 文献号2200507; DOI: 10.1002/advs.202200507; 出版时间JUL 2022; 在线发表APR 2022.

33. J.F. Yan, Y.N. Ma*, G. Jia, S.R. Zhao, Y. Yue*, F. Cheng*, C.K. Zhang, M.L. Cao, Y.C. Xiong, P.Z. Shen, Y.H. Gao. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 431, 133458 (2022).

32. Y.X. Wang, Y. Yue*, F. Cheng, Y.F. Cheng, B.H. Ge, N.S. Liu & Y.H. Gao. Ti3C2Tx MXene Based Flexible Piezoresistive Physical Sensors. ACS Nano 16(2), 1734−1758 (2022). DOI: 10.1021/acsnano.1c09925; 出版时间FEB 22 2022.

31. H. Wu, W.F. Zhang, L. Yang, J. Wang, J. Li, L.Y. Li, Y.H. Gao, L. Zhang, J. Du, H.B. Shu & H.X. Chang*. Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals. Nat. Commun. 12(1), 5688 (2021).

30. C.Y. Wang, F.C. Yang* & Y.H. Gao. The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance. Nanoscale Adv. 2, 4323-4340 (2020)

29. J.F. Yan, Y.N. Ma*, X.X. Li, C.K. Zhang, M.L. Cao, W. Chen, S.J. Luo, M. Zhu & Y.H. Gao. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure. Ceram. Int. 46, 23592-23598 (2020). 

28. L. Mao, S.M. Hu, Y.H. GaoL. Wang, W.W. Zhao, L.N. Fu, H.Y. Cheng, L. Xia, S.X. Xie, W.L. Ye, Z.J. Shi & G. Yang*. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation. Adv. Healthc. Mater.  2000872 (2020).

27. X.X. Li, Y.N. Ma*, P.Z. Shen, C.K. Zhang, J.F. Yan, Y.B. Xia, S.J. Luo & Y.H. Gao. Self- Healing Microsupercapacitors with Size-Dependent 2D MXene. Chem. Electro. Chem. 7, 201902099 (2020).

26. X.X. Li, Y.N. Ma*, P.Z. Shen, C.K. Zhang, M.L. Cao, S.J. Xiao, J.F. Yan, S.J. Luo & Y.H. Gao. An Ultrahigh Energy Density Flexible Asymmetric Microsupercapacitor Based on Ti(3)C(2)T(x)and PPy/MnO(2)with Wide Voltage Window. Adv. Mater. Technol. 5, 2000272 (2020).

25. S. Wang, H.L. Long, Y. Zhang, Q. Chen, J.N. Dai*, S. Zhang, J.W. Chen, R.L. Liang, L.L. Xu, F. Wu, Z.H. Zhang, H.D.  Sun, C.Q. Chen & Y.H. Gao. Monolithic integration of deep ultraviolet LED with a multiplicative photoelectric converter Monolithic integration of deep ultraviolet LED with a multiplicative photoelectric converter. Nano Energy 66, 104181 (2019).

24. Y.H. He, Z. Wang*, X.K. Hu, Y.X. Cai, L.Y. Li,  Y.H. Gao, X.H. Zhang, Z.B. Huang, Y.M. Hu & H.S. Gu.Orientation-dependent piezoresponse and highperformance energy harvesting of lead-free (K,Na)NbO3 nanorod arrays. RSC Adv. 7, 16908 (2017).

23. Y.H. He, Z. Wang*, W.C. Jin, X.H. Hu, L.Y. Li, Y.H. Gao, X.H. Zhang, H.S. Gu & X.L. Wang. Phase Boundary and Annealing Dependent Piezoelectricity in Lead-Free (K,Na)NbO3 Nanorod Arrays. Appl. Phys. Lett. 110, 212904 (2017).

22. Y. Huang, J.Y. Tao, W.J. Meng, M.S. Zhu, Y. Huang, Y.Q. Fu, Y.H. Gao & C.Y. Zhi*. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518-525 (2015).

21. T. Lin, Z.R. Qiu, J.R.Yang, L.W. Ding, Y.H. Gao & Z.C. Feng*. Investigation of   photoluminescence dynamics in InGaN/GaN multiple quantum wells. Mater. Lett. 173, 170-173 (2016).

20. X.H. Lu, T. Zhai, X.H. Zhang, Y.Q. Shen, L.Y. Yuan, B. Hu, L. Gong, J. Chen, Y.H. Gao, J. Zhou*, Y.X. Tong* & Z.L. Wang. WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors. Adv. Mater. 24(7), 938-944 (2012).

19. X.H. Zhang, X.H. Lu, Y.Q. Shen, J.B. Han, L.Y. Yuan, L. Gong, Z. Xu, X.D. Bai, M. Wei, Y.X. Tong, Y.H. Gao, J. Chen, J. Zhou* & Z.L. Wang. Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 47, 5804-5806 (2011).

18. R.R. Fang, D.M. Zhang, H. Wei, Z.H. Li, F.X. Yang & Y.H. Gao. Improved two-temperature model and its application in femtosecond laser ablation of metal target. Laser Part. Beams 28, 157-164 (2010).

17. X.H. Zhang, L. Gong, K. Liu, Y.Z. Cao, X. Xiao, W.M. Sun, X.J. Hu, Y.H. Gao, J. Chen, J. Zhou* & Z.L. Wang. Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode. Adv. Mater. 22, 5292-5296 (2010).

16. J.N. Dai, X.Y. Han, Z.H. Wu, C.H. Yu, R.F. Xiang, Q.H. He, Y.H. Gao, C.Q. Chen, X.H. Xiao & T.C. Peng. Growth of non-polar ZnO films on a-GaN/r-Al(2)O(3) templates by radio-frequency magnetron sputtering. J. Alloy. Compd. 489, 519-522 (2010).

15. Y.Z. Sun, L. Yi & Y.H. Gao. Thermodynamic and critical properties of dilute XY magnets: Monte Carlo study. Solid State Commun.149, 1000-1003 (2009).

14. L.Y. Yuan, G.J. Fang, X. Zou, H.H. Huang, H. Zou, X.Y. Han, Y.H. Gao, S.Xu & X.Z. Zhao. Optical and electrical characterization of alpha-InGaZnO thin film fabricated by pulsed laser deposition for thin film transistor applications. J. Phys. D Appl. Phys. 42, 215301 (2009).

13. L.Y. Yuan, G.J. Fang, H. Zhou, Y.H. Gao, C. Liu & X.Z. Zhao. Suppression of near-edge optical absorption band in sputter deposited hafnium oxynitride via nitrogen incorporation and annealing. J. Phys. D Appl. Phys. 42, 145302 (2009).

12. Y.H. Zhou, G. Yang, Z.H. Zhang, H. Long, X.F. Duan, Y.H. Gao, Q.G. Zheng & P.X. Lu. Optical characterization of beta-FeSi2 thin films prepared by femtosecond laser ablation. Chinese Phys. Lett. 24, 563-566 (2007).

11. G. Z. Shen, Y. Bando, Y.H. Gao & D. Golberg. Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions. J. Phys. Chem. B 110, 14123-14127 (2006).

10.  Z.W. Liu, Y.H. Gao & Y. Bando. Highly effective metal vapor absorbents based on carbon nanotubes. Appl. Phys. Lett. 81, 4844-4846 (2002).

9. Z. Liliental-Weber, Y.H. Gao & Y. Bando. Transmission electron Microscopy characterization of GaN nanowires. J. Electron Mater. 31, 391-394 (2002).

8. F.M. Yang, J. L. Wang, Y.H. Gao, N. Tang, X.F. Han, H.G. Pan, Q.A. Li, J.F. Hu, J. P. Liu & F.R. DeBoer.  A study on the exchange interaction in R(2)Fe(17) compounds. J. Appl. Phys. 79, 7883-7886 (1996).

7. X.M. Bao, L.S. Liao, N.S. Li, N.B. Min, Y.H. Gao & Z. Zhang. The formation and microstructures of Si-based blue-light emitting porous beta-SiC. Nucl. Instrum. Meth. B 119, 505-509 (1996).

6. J. L. Wang, W.Z. Li, X.P. Zhong, Y.H. Gao, W.D. Qin, N. Tang, W.G. Lin, J.X. Zhang, R.W. Zhao, Q.W. Yan & F.M. Yang. Study on high performance Sm2Fe17Nx Magnets. J. Alloy. Compd. 222, 23-26 (1995).

5. N. Tang, J. L. Wang, Y.H. Gao, W.Z. Li, F.M. Yang & F.R. DeBoer. Magnetic Properties of R(2)(Fe1-xGax)(17) compounds with R=Y, Sm, Dy, Ho. J. Magn. Magn. Mater. 140, 979-980 (1995).

4. D.M. Zhang, Y.H. Gao, B.M. Yu, C.Q. Tang, N. Tang, X.P. Zhong, W.G. Lin, F.M. Yang & F. R. DeBoer. The magnetic properties of R2(Fe1-xSix)17 compounds (R=Dy, Y). J. Appl. Phys. 76, 7452 (1994).

3. J.L. Wang, W.G. Lin, N. Tang, W.Z. Li, Y.H. Gao & F.M. Yang. Magnetic properties of (Er,R)2Fe17Ny compounds (R=Y,Gd). J. Appl. Phys. 75, 6238-6240 (1994).

2. W.Z. Li, N. Tang, X.P. Zhong, J.L. Wang, Y.H. Gao, F.M. Yang* & Y.W. Zeng*. Magnetic properties of Sm2(Fe1-xGax)17 compounds (x=0-0.5). J. Alloy. Compd. 209, 245-249 (1994).

1. J. L. Wang, R. W. Zhao, N. Tang, W.Z. Li, Y.H. Gao, F.M. Yang* & F. R. DeBoer*. Magnetic properties of R(2)Fe(17-x)Ga(x) compounds (R=Y, Ho). J. Appl. Phys. 76, 6740-6742 (1994).

  

四,参与撰写著作

1.《Progress in Nanoscale Characterization and Manipulation》(ISBN 978-7-301-28306-6,2017年)中的第7章第2节,北京大学出版社,“十三五”国家重点图书出版规划项目。

2. 翻译著作《四维电子显微镜在空间和时间中成像》(ISBN 978-7-5680-1479-3,2016年)的第4章,华中科技大学出版社,“十二五”国家重点图书出版规划项目,世界光电经典译丛。


五,国内外重要学术团体任职情况

2018年2022年,湖北省电子显微镜学会,副理事长;

2011年起,全国自然科学奖材料科学组,通讯评审和会议评审专家;

2010年起,Nature Materials, Advanced Materials等Top期刊,通讯评审专家;

2009年起,中国仪器仪表学会微纳器件与系统技术分会,高级会员。

 

六,获奖(或人才)情况

1. “湖北省优秀博士论文导师奖 “氧化钨和氧化锌一维纳米线阵列的制备和光电器件研究”,作者: 2014届张翔晖博士,2015年,湖北省人民政府学位委员会, 湖北省教育厅。

2. “湖北省第十六届自然科学优秀学术论文” “Graphene-Skeleton Heat-Coordinated and Nanoamorphous-Surface-State Controlled Pseudo-Negative- Photoconductivity of Tiny SnO2 Nanoparticles”, Adv. Mater. 2015, 27, 3525. 一等奖,第一排序,2016. 湖北省科学技术协会, 湖北省人力资源和社会保障厅, 湖北省科学技术厅。

3. 楚天学者特聘教授,2009年,湖北省教育厅。

4. “三育人奖”,华中科技大学,2015年。

5. 湖北省杰出青年,湖北省科技厅,2007年。

6. 日本Tsukuba Prize (筑波杰出科学家奖, 1973年物理学诺贝尔奖得主江崎玲於奈和2000年化学诺贝尔奖得主白川英树颁奖),2005年,第3排序,国际奖励,日本财团法人茨城县科学技术振兴财团,文部科学省,茨城县,NHK(日本放送协会)。



七,Web news 网上新闻报道

39. https://zhuanlan.zhihu.com/p/647030765

38. https://mp.weixin.qq.com/s/anfOCRNq01t9fRG11C0nLA

37. https://mp.weixin.qq.com/s/KE2L3UiqRZ9MNQw93K1ELQ

36. https://mp.weixin.qq.com/s/kL_yAEZH_LBEovZBGPc4nw

35. https://c.m.163.com/news/a/HM4J7AVR0532LW3O.html?spss=newsapp&spsnuid=5ksikjiYiRo5O2cr%2Bwl%2BRd27nEDDQLbTdztbWlkCGc7IiMtWN%2F%2ByhVHuTC3SY2YPLKLFB1b60t5bfMyo%2BfU9vA%3D%3D&spsdevid=0767AEF0-7BC5-44F8-BD18-FDFDCE5E4632&spsvid=&spsshare=wx&spsts=1668483592590&spstoken=EYC%2FORbW7ROjFjNJg7u97ToG0H4pYpu43zHCp93TTWsNtBR5Wcz2xzrfxFr8vSBU&spssid=eefe64b4b895b89af0d8c2a4f7f44ed8&spsw=2&isFromH5Share=article

34. https://mp.weixin.qq.com/s/WajteNQUTNeseAXmaAP7Jw

33. https://mp.weixin.qq.com/s/hT3rmyosvCFtzPu7VvMZjA

32. https://mp.weixin.qq.com/s/4ROEMMWv8-DgBbJmObgrpQ

31. https://mp.weixin.qq.com/s/RDvA3ACAe3lBRYyYVSEj7w

30. https://mp.weixin.qq.com/s/KIH8HGmrf-wr558zQ-9AhA

29. https://mp.weixin.qq.com/s/FldM44RVDIFjv75-D4V4sw

28. https://mp.weixin.qq.com/s/qwTYW7KBxiJZ2SLaHw_mZQ

27.http://mp.weixin.qq.com/s?__biz=Mzg3MzU5OTM2OQ==&mid=2247515725&idx=3&sn=2968bd3f3100e0d0edbcba1a4fd77044&chksm=cedf66abf9a8efbd5ab140b9917864f39cb6e32235740f01d17c7a6a00c81be116c5f2d9eedc&mpshare=1&scene=23&srcid=0110nH8LkzrGottC9B8y88N9&sharer_sharetime=1648694916067&sharer_shareid=1f29face720a3998190565ce6ad2f8c4#rd

http://mp.weixin.qq.com/s?__biz=Mzg3MzU5OTM2OQ==&mid=2247504928&idx=1&sn=531a52148130c71f4c6cd48e108bd4a8&chksm=cedf0cc6f9a885d0e0883ceefdc7c867e2e14a2c33a758ed904dffe637f8eafeb848fb416f04&mpshare=1&scene=23&srcid=0110ucH1QO04YjEVdUQEPmXw&sharer_sharetime=1648694857156&sharer_shareid=1f29face720a3998190565ce6ad2f8c4#rd

26. https://mp.weixin.qq.com/s/7pgcm49PwABmLHDhQ2V6jw

25. https://zhuanlan.zhihu.com/p/471888399

24.http://mp.weixin.qq.com/s?__biz=MzIxNDIwODY1NQ==&mid=2652958005&idx=1&sn=f9583a1e3bc20b719088d5dd900f1fca&chksm=8c7f54d5bb08ddc342f2c38f133722e9c8b19a280cd6d2c57fcec7163cb122188f510cea1db3&mpshare=1&scene=23&srcid=0216zv1tFdkght2KHP2Rk6BE&sharer_sharetime=1648694234596&sharer_shareid=1f29face720a3998190565ce6ad2f8c4#rd

23. http://phys.hust.edu.cn/info/1211/4653.htm

22. https://view.inews.qq.com/a/20220324A01BSO00

21. https://zhuanlan.zhihu.com/p/139651618?utm_source=wechat_session

20. https://mp.weixin.qq.com/s/NqlRzk8iVdQQpIPDQCcFCA,

19. http://www.sztspi.com/kuaixun/207527.html

18.https://mp.weixin.qq.com/s?__biz=MzA5NjI0NTY4MA==&mid=2247489698&idx=1&sn=5e64af331a1191155940811c08a5e8b0&chksm=90b25a7da7c5d36b13786cbd42c6bbe7673b96e07decb5bfc25ced1e586248964f0e2d08ca61&mpshare=1&scene=24&srcid=0817xZFxx9fWQfoGv8SKA4qu&sharer_sharetime=1597651570148&sharer_shareid=0e8be67eb7e2cd5e93a5e129c982655d&key=a5121dd1fbb299a4e400d05f3f96d4c595a694583a69725e2948740697b007ecf76e67b2b3e569ac339d6db69a82216e1a54f7ed5b00f8b7118f5db95b15c1fc9c60a1455de41f4e7eaaf7b1cc04c6d8d46e7ad505dafcbe1cb122cc19404d63bd2f6c36950655935172853af167c0dce20425ddd56a3fb83b1749974f7c7c7c&ascene=14&uin=Nzk5NTIxNDYy&devicetype=Windows+7+x64&version=62090538&lang=zh_CN&exportkey=AT9vowWCLLw2qQynqrhI6MM%3D&pass_ticket=6goO9j%2Bu1U7Ju4WCJfBUoyzEiEkT%2BrHcAGlnfuXdz4xnhAQ3VdJ1p643bU3Su366

17. https://mp.weixin.qq.com/s/tptb7_JAQdP_FGX-YoqUgQ

16. https://mp.weixin.qq.com/s/p1BdOJ-Uxu1TK6kBKr0otA,

15. http://news.hust.edu.cn/_t6/2015/0515/c155a5128/page.htm,

14. http://news.hust.edu.cn/_t6/2016/1121/c155a6038/page.htm,

13. http://news.hust.edu.cn/_t6/2017/0214/c155a66755/page.htm,

12. http://news.hust.edu.cn/_t6/2017/0220/c155a66720/page.htm,

11. http://news.hust.edu.cn/_t6/2017/1108/c155a88521/page.htm,

10. http://news.hust.edu.cn/_t6/2018/0628/c155a91435/page.htm,

9. http://phys.hust.edu.cn/info/1211/2106.htm,

8. http://www.wnlo.cn/index.php?id=5825,

7. http://www.wnlo.cn/index.php?id=6547,

6. http://news.hust.edu.cn/_t6/2013/0804/c213a85319/page.htm,

5. http://wnlo.net/index.php?id=5672,

4. http://wnlo.net/index.php?id=5745,

3. http://news.hust.edu.cn/_t6/2016/0824/c155a5868/page.htm,

2. http://phys.hust.edu.cn/info/1211/2797.htm,

1. https://www.sohu.com/a/232837617_142474.


八,科研项目

(一)Main Research Projects 主要科研项目

8. 基于MXene原位衍生负极的H+/Zn2+共摇椅电池的构建与定量微机制研究(No. 12274151), 国家自然科学基金面上项目, 2023.01.01-2026.12.31, 56, 负责。

7. SQDs表面修饰TMDs的巨大负光电导效应研究(No.11874025), 国家自然科学基金面上项目, 2019.01.01-2022.12.31, 64, 负责。

6. Sb、Cu高浓度掺杂ZnO纳米阵列的白光与波长可调可见光LED的定量研究(No.11674113), 国家自然科学基金面上项目,2017.01.01-2020.12.31,70万,负责。

5. 微纳复合结构中金属液体填充物的电致力效应的原位研究(No.11374110),国家自然科学基金面上项目,2014.01.01-2017.12.31,88万,负责。

4. ZnO/NiO 芯壳异质结纳米阵列的构筑和光发射效率研究(No.11074082),国家自然科学基金面上项目,2011.01.01-2013.12.31,45万,负责。

3. 基于纳米结构的新型柔性纤维基可编织光伏器件重要基础问题研究(No.2011CB933300),科技部973项目(纳米专项),2011.01.01-2015.12.31,2200万,排名第10。

2. 一维纳米芯壳结构的光电热器件与机理研究 No.080230教育部新世纪人才基金, 2009.01-2011.12, 50万,负责。

1. 温度梯度场诱导的一维纳米温度计实用化研究(No.10774053), 国家自然科学基金面上项目, 2008.01.01-2010.12.31, 36万, 负责。


(二)其他科研项目

12,砷化镓纳米线中界面电荷调控及结构性能关系的原子级电子显微学研究(国家自然基金面上项目),2019.01.01-2022.12.01,60万,参与。

11,Sb、Cu高浓度掺杂ZnO纳米阵列的白光与波长可调可见光LED的定量研究(三峡大学合作项目),2017.06.01-2019.06.01,2万,主持。

10,准晶结构的球差校正电镜高分辨HAADF研究(武汉大学合作项目), 2013.09.01-2013.12.01,4.8万,主持。

9,锂离子电池正极材料的微结构、相变和构效关系的透射电子显微学研究(武汉大学合作项目),2013.09.01-2016.12.01,4.9万,主持。

8,局域肖特基势垒的光电力耦合效应对ZnO纳米线电输运特性调制机理(国家自然基金面上项目)2013.01.01-2015.12.01,28万,参与。

7,纳米阵列的慢光特性和光增强机理研究指导(理论物理专款-合作研修,中南民族大学合作项目),2012.01.01-2014.12.01,3万,主持。

6,氧化锌准一维纳米材料陈列的制备与光电、机电性能及相关器件研究(启动费),2010.01.01-2014.12.01,500 万,参与。

5,纳米温度计的实用化研究(回国人员基金),2008.09.01-2010.12.01,2.5 万, 主持。

4,温度梯度场诱导的一维纳米热传感核心元件的研制(湖北省杰出青年基金),2008.01.01-2010.12.01,6万,主持。

3,一维纳米光电材料和器件的研究(博士点基金),2007.01.01-2008.12.01,5万,主持。

2,新型硅基微纳光电子器件及集成技术基础研究(973预研),2006.12.01-2008.11.01,80万,参与。

1,一维纳米光电热器件的场诱导研制(校基金),2006.09.01-2008.08.01, 10 万,主持。


九, Patents 专利

19. 高义华;李露颖;沈少立;康喆;章楼文。一种高性能混合型光电探测器的构筑方法及其调控策略(201811370675.X)。 2020.07.10

18. 高义华;杨从星;刘逆霜。基于碎片化结构提升压阻式传感器灵敏度的方法(201810293580.6)2020.02.14  

17. 高义华;马亚楠;刘逆霜。基于MXene/rGO复合三维结构的高灵敏传感器(201810143600.1)2020.01.30

16. 高义华;王思亮;刘逆霜。基于喷墨打印的锡铟铋基合金柔性电极及其制备方法(201610983839.0)2020.02.14

15. 高义华刘逆霜;罗成。一种基于纳米线作隔离层的压阻式传感器及其制备方法(201710593245.3)2019.8.5

14高义华;丁龙伟;刘逆霜;李露颖。一种基于二氧化锡纳米颗粒的光电逻辑门及其制备方法(201510237552.9)2017.6.2

13. 高义华;楚亮;凃帆帆;李露颖;苏俊;刘逆霜。锐钛矿 TiO2 纳米树状阵列及其在太阳能电池制备中的应用(201410104151.1, A General Method for Preparing Anatase TiO2 Treelike-Nanoarrays on Various Metal Wires for Fiber Dye-Sensitized Solar Cells) 2017.1.11

12. 高义华;刘逆霜;马文真;李建。Ni纳米线、NiO-Ni自支撑膜及其制备方法和应用 (201310740240.0, Fabrication of Free-Standing Ni@NiO Supercapacitor Electrode)2016.8.31

11. 高义华;张翔晖;韩祥云, 苏俊。一种氧化锌纳米线阵列紫外光电探测器的制备方法(201310499193.5, Fabrication of UV photodetector based on ZnO nanowire arrays)2016.8.31

10. 高义华;傅琰;孙敏。金属In填充MgO纳米管及其制造方法和应用(201110363603.4, Fabrication and application of In filled MgO nanotubes)2013.7.10

9. 高义华;孙敏;苏俊。一种镓填充的二氧化硅纳米管阵列的制备方法及其应用(201110363602.X, Fabrication and application of Ga filled SiO2 nanotube arrays)2013.3.20

8.  Y. Bando; Y.H. Gao; T. Sato. Temperature measuring method using micro temperature sensing element (US7331709). 2008. 2.19

7.  Y. Bando; Y.H. Gao; T. Sato . Nanotube, nano thermometer and method for the same (US7291299). 2007.11.6

6. Y. Bando; Y.H. GaoD.Golberg.  In filled carbon nanotubes for temperature sensor (JP3921533). 2007.3.2

5. Y. Bando; Y.H. Gao. Fabrication method of b-Ga2O3 nanowires(JP3972093). 2007.6.22

4. Y. Bando; Y.H. Gao; T. Sato Fabrication method of nanothermometer (JP3686941). 2011. 2.4.

3. Y. Bando; Y.H. Gao; T. Sato Fabrication method of Ge3N4 nanobelts (JP3731045). 2010.12.21

2. Y.Bando; Y.H. Gao; Z.W.Liu. Measuring method of mini thermometer (JP3924616). 2007.3.9.

1. Y.Bando;  Y.H. Gao; Z.W.Liu. Absorbing materials of metallic vapor (JP3692403). 2011. 12.4.


  • 教育经历Education Background
  • 工作经历Work Experience
    暂无内容
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
    暂无内容