罗亮

个人信息Personal Information

教授   博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:生命科学与技术学院

学历:研究生(博士)毕业

毕业院校:美国纽约州立大学石溪分校

学科:生物医学工程

论文成果

当前位置: Chinese homepage >> 科学研究 >> 论文成果

Spin-Orbit Charge Transfer Intersystem Crossing (SOCT-ISC) in Perylene-Bodipy Compact Electron Donor-Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents

点击次数:

论文类型:期刊论文

发表刊物:Chemistry

收录刊物:SCI

卷号:26

期号:5

页面范围:1091-1102

ISSN号:0947-6539

发表时间:2020-01-22

影响因子:4.857

摘要:Spin–orbit charge‐transfer intersystem crossing (SOCT‐ISC) is useful for the preparation of heavy atom‐free triplet photosensitisers (PSs). Herein, a series of perylene‐Bodipy compact electron donor/acceptor dyads showing efficient SOCT‐ISC is prepared. The photophysical properties of the dyads were studied with steady‐state and time‐resolved spectroscopies. Efficient triplet state formation (quantum yield ΦT=60 %) was observed, with a triplet state lifetime (τT=436 μs) much longer than that accessed with the conventional heavy atom effect (τT=62 μs). The SOCT‐ISC mechanism was unambiguously confirmed by direct excitation of the charge transfer (CT) absorption band by using nanosecond transient absorption spectroscopy and time‐resolved electron paramagnetic resonance (TREPR) spectroscopy. The factors affecting the SOCT‐ISC efficiency include the geometry, the potential energy surface of the torsion, the spin density for the atoms of the linker, solvent polarity, and the energy matching of the 1CT/3LE states. Remarkably, these heavy atom‐free triplet PSs were demonstrated as a new type of efficient photodynamic therapy (PDT) reagents (phototoxicity, EC50=75 nm), with a negligible dark toxicity (EC50=78.1 μm) compared with the conventional heavy atom PSs (dark toxicity, EC50=6.0 μm, light toxicity, EC50=4.0 nm). This study provides in‐depth understanding of the SOCT‐ISC, unveils the design principles of triplet PSs based on SOCT‐ISC, and underlines their application as a new generation of potent PDT reagents.

发布期刊链接:https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201904306?af=R