罗亮

个人信息Personal Information

教授   博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:生命科学与技术学院

学历:研究生(博士)毕业

毕业院校:美国纽约州立大学石溪分校

学科:生物医学工程

论文成果

当前位置: Chinese homepage >> 科学研究 >> 论文成果

Efficient Radical-Enhanced Intersystem Crossing in an NDI-TEMPO Dyad: Photophysics, Electron Spin Polarization, and Application in Photodynamic Therapy

点击次数:

论文类型:期刊论文

发表刊物:Chemistry – A European Journal

收录刊物:SCI

卷号:24

期号:70

页面范围:18663-18675

ISSN号:0947-6539

DOI码:10.1002/chem.201804212

发表时间:2018-12-04

影响因子:5.16

摘要:A compact naphthalenediimide (NDI)–2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) dyad has been prepared with the aim of studying radical‐enhanced intersystem crossing (EISC) and the formation of high spin states as well as electron spin polarization (ESP) dynamics. Compared with the previously reported radical–chromophore dyads, the present system shows a very high triplet state quantum yield (ΦT=74 %), a long‐lived triplet state (τT=8.7 μs), fast EISC (1/kEISC=338 ps), and absorption in the red spectral region. Time‐resolved electron paramagnetic resonance (TREPR) spectroscopy showed that, upon photoexcitation in fluid solution at room temperature, the D0 state of the TEMPO moiety produces strong emissive (E) polarization owing to the quenching of the excited singlet state of NDI by the radical moiety (electron exchange J>0). The emissive polarization then inverts into absorptive (A) polarization within about 3 μs, and then relaxes to a thermal equilibrium while quenching the triplet state of NDI. The formation and decay of the quartet state were also observed. The dyad was used as a three‐spin triplet photosensitizer for triplet–triplet annihilation upconversion (quantum yield ΦUC=2.6 %). Remarkably, when encapsulated into liposomes, the red‐light‐absorbing dyad–liposomes show good biocompatibility and excellent photodynamic therapy efficiency (phototoxicity EC50=3.22 μm), and therefore is a promising candidate for future less toxic and multifunctional photodynamic therapeutic reagents.

发布期刊链接:https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201804212