李箐

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:材料科学与工程学院

学历:研究生(博士)毕业

学位:理学博士学位

毕业院校:北京大学

学科:材料化学
物理化学
材料物理与化学
曾获荣誉:
2023    斯坦福大学全球前2%顶尖科学家榜单
2023    Chem. Commun.期刊Presentation Prize
2023    Sci. China Chem.期刊新锐科学家
2022    英国皇家化学会会士
2021    国家自然科学基金委“优秀青年科学基金”(结题优秀)
2017    华中科技大学优秀教师班主任
2010    北京大学优秀博士论文

Triggering the Dual-Metal-Site Lattice Oxygen Mechanism with In Situ-Generated Mn3+ Sites for Enhanced Acidic Oxygen Evolution
发布时间:2024-12-29  点击次数:

论文类型:Research Article
第一作者:Liu,Jianyun
通讯作者:Li,Qing,Huang,Bolong,Wang,Tanyuan
合写作者:Huang,Yunhui,Cao,Ruiguo,Shen,Yue,Yang,Shi,Hao,Liu,Shuxia,Wang,Shiyu,Liao,Mengyi,Sun,Mingzi
发表刊物:Journal of the American Chemical Society
所属单位:华中科技大学
刊物所在地:美国
文献类型:Article
卷号:146
期号:48
页面范围:33276–33287
ISSN号:0002-7863
关键字:Catalysts; Lattices; Oxygen; Radiology; Transition metals
DOI码:10.1021/jacs.4c14338
发表时间:2024-11-21
影响因子:14.4
摘要:The development of high-performance non-Ir/Ru catalysts for the oxygen evolution reaction (OER) in acid is critical for the applications of proton exchange membrane water electrolyzers (PEMWEs). Here, we report a new kind of heterostructure catalyst by loading 5.8% Ag nanoparticles on MnO nanorods (Ag/MnO) for acidic OER. The as-prepared Ag/MnO requires only an overpotential of 196 mV for the OER at a current density of 10 mA cm–2 in 0.5 M H2SO4 and operates in a PEMWE for over 300 h at a current density of 200 mA cm–2, representing one of the best non-Ir/Ru OER catalysts. Operando X-ray absorption spectroscopy confirms that the introduction of trace Ag can promote the generation of highly active Mn3+–O sites with oxygen vacancies at a low voltage, leading to a dual-metal-site lattice oxygen-mediated pathway with faster kinetics than the adsorbate evolution mechanism. Theoretical calculations indicate that the trace Ag promotes the overlap between the d orbitals of Mn and the s, p orbitals of O, thereby activating the lattice oxygen and reducing the OER energy barrier. The dissolution of Mn is also suppressed by Ag due to the increased energy for vacancy formation of Mn, where the stability number reaches a high value of 3058, supporting improved structural stability.