李箐

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:材料科学与工程学院

学历:研究生(博士)毕业

学位:理学博士学位

毕业院校:北京大学

学科:材料化学
物理化学
材料物理与化学
曾获荣誉:
2023    斯坦福大学全球前2%顶尖科学家榜单
2023    Chem. Commun.期刊Presentation Prize
2023    Sci. China Chem.期刊新锐科学家
2022    英国皇家化学会会士
2021    国家自然科学基金委“优秀青年科学基金”(结题优秀)
2017    华中科技大学优秀教师班主任
2010    北京大学优秀博士论文

Anti-Corrosive SnS2/SnO2 Heterostructured Support for Pt Nanoparticles Enables Remarkable Oxygen Reduction Catalysis via Interfacial Enhancement
发布时间:2024-12-29  点击次数:

论文类型:Research Article
第一作者:Lin,Zijie
通讯作者:Li,Qing
合写作者:Huang, Yunhui,Han, Jiantao,Lu, Gang,Xie, Linfeng, Xuan,Liang, Jiashun,Li, Shenzhou,Liu, Junyi
发表刊物:Advanced Functional Materials
所属单位:华中科技大学
刊物所在地:德国
文献类型:Article
卷号:33
期号:11
页面范围:2211638
ISSN号:1616-3028
关键字:Catalyst Supports; Fuel Cells; Heterostructures; Oxygen Reduction Reactions; Tin Oxides
DOI码:10.1002/adfm.202211638
发表时间:2023-01-01
影响因子:18.5
摘要:The stability of Pt-based catalysts for oxygen reduction reaction (ORR) in hydrogen fuel cells is seriously handicapped by the corrosion of their carbon supports at high potentials and acidic environments. Herein, a novel SnS2/SnO2 hetero-structured support is reported for Pt nanoparticles (NPs) as the ORR catalyst, where Pt NPs are mainly deposited at the interfaces of SnS2 and SnO2 moieties. The Pt-support interactions, which can be tuned by the concentration of the heterointerfaces, can accelerate the electronic transfer and enrich the electron density of Pt with a favorable shift of the d-band center. In electrochemical measurements, the ORR mass activity (MA) of the optimal Pt-SnS2/SnO2 catalyst at 0.9 V versus RHE (0.40 A mgPt−1) is four times higher than that of Pt/C. As for the stability, the electrochemical active surface area and MA of Pt-SnS2/SnO2 are only decreased by 18.2% and 23.7% after 50 000 potential cycles at a high potential region (1.0–1.6 V), representing the best ORR stability among the reported Pt-based catalysts. Density functional theory calculations indicate that the binding energy and migration barrier of Pt atom/cluster on the SnS2/SnO2 heterojunction are much higher relative to other supports, accounting for the outstanding stability of the catalyst.