个人信息
Personal information
教授 博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:材料科学与工程学院
学历:研究生(博士)毕业
学位:理学博士学位
毕业院校:北京大学
学科:材料化学物理化学
材料物理与化学
曾获荣誉:
2023 斯坦福大学全球前2%顶尖科学家榜单
2023 Chem. Commun.期刊Presentation Prize
2023 Sci. China Chem.期刊新锐科学家
2022 英国皇家化学会会士
2021 国家自然科学基金委“优秀青年科学基金”(结题优秀)
2017 华中科技大学优秀教师班主任
2010 北京大学优秀博士论文
论文类型:Research Article
第一作者:Lin,Zijie
通讯作者:Li,Qing
合写作者:Huang, Yunhui,Han, Jiantao,Lu, Gang,Xie, Linfeng, Xuan,Liang, Jiashun,Li, Shenzhou,Liu, Junyi
发表刊物:Advanced Functional Materials
所属单位:华中科技大学
刊物所在地:德国
文献类型:Article
卷号:33
期号:11
页面范围:2211638
ISSN号:1616-3028
关键字:Catalyst Supports; Fuel Cells; Heterostructures; Oxygen Reduction Reactions; Tin Oxides
DOI码:10.1002/adfm.202211638
发表时间:2023-01-01
影响因子:18.5
摘要:The stability of Pt-based catalysts for oxygen reduction reaction (ORR) in hydrogen fuel cells is seriously handicapped by the corrosion of their carbon supports at high potentials and acidic environments. Herein, a novel SnS2/SnO2 hetero-structured support is reported for Pt nanoparticles (NPs) as the ORR catalyst, where Pt NPs are mainly deposited at the interfaces of SnS2 and SnO2 moieties. The Pt-support interactions, which can be tuned by the concentration of the heterointerfaces, can accelerate the electronic transfer and enrich the electron density of Pt with a favorable shift of the d-band center. In electrochemical measurements, the ORR mass activity (MA) of the optimal Pt-SnS2/SnO2 catalyst at 0.9 V versus RHE (0.40 A mgPt−1) is four times higher than that of Pt/C. As for the stability, the electrochemical active surface area and MA of Pt-SnS2/SnO2 are only decreased by 18.2% and 23.7% after 50 000 potential cycles at a high potential region (1.0–1.6 V), representing the best ORR stability among the reported Pt-based catalysts. Density functional theory calculations indicate that the binding energy and migration barrier of Pt atom/cluster on the SnS2/SnO2 heterojunction are much higher relative to other supports, accounting for the outstanding stability of the catalyst.