Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity
论文类型:期刊论文
第一作者:Caihong Gu
通讯作者:Yanbin Tang
发表刊物:Networks and Heterogeneous Media
收录刊物:SCI
所属单位:华中科技大学
刊物所在地:USA
学科门类:理学
一级学科:数学
文献类型:J
卷号:18
期号:1
页面范围:109-139
ISSN号:1556-1801
关键字:Drift-diffusion system, Keller-Segel equations, global solutions, fractional Laplacian, asymptotic behavior, multi-linear operator
DOI码:10.3934/nhm.2023005
发表时间:2023-01-01
影响因子:1.41
摘要:In this paper, we consider the global existence, regularizing decay rate and asymptotic behavior of mild solutions to Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Using the properties of fractional heat semigroup and the classical estimates of fractional heat kernel, we first prove the global-in-time existence and uniqueness of the mild solutions in the frame of mixed time-space Besov space with multi-linear continuous mappings. Then, we show the asymptotic behavior and regularizing-decay rate estimates of the solution to equations with power-law nonlinearity by the method of multi-linear operator and the classical Hardy-Littlewood-Sobolev inequality.