个人信息
Personal information
教授 博士生导师
所在单位:集成电路学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:华中科技大学
学科:微电子学与固体电子学曾获荣誉:
2024 华中科技大学青年五四奖章
2022 华为奥林帕斯先锋奖
2020 湖北省技术发明一等奖(排名第2)
2013 湖北省年度“十大科技事件”
2013 湖北省优秀博士学位论文
2014 湖北省优秀学士学位论文指导教师
2015 华中科技大学教师教学竞赛二等奖
2017 华中科技大学光学与电子信息学院“我最喜爱的教师班主任“
2020 华中科技大学光学与电子信息学院突出贡献一等奖
论文类型:期刊论文
第一作者:林俊
通讯作者:徐明
合写作者:童浩
发表刊物:Science China Materials
所属单位:华中科技大学
学科门类:工学
一级学科:电子科学与技术
文献类型:J
卷号:66
期号:4
页面范围:1551-1558
关键字:spiking neural network,Ge-Ga-Sb phase-change-memory
DOI码:10.1007/s40843-022-2283-9
发表时间:4492-07-01
摘要:The implementation of artificial spiking neural network (SNN) usually takes advantage of multiple heterogeneous circuits to mimic either neurons which generate spiking pulses, or synapses which store the weights of event correlations. Here, we design a homogeneous device using Ge-Ga-Sb (GGS) as a phase-change-memory (PCM) material which can do both jobs. The GGS compound shows high stability when used in data storage, such as high working temperature (281°C) and high 10-years data retention temperature (230°C), as well as low resistance drift. Interestingly, when the as-fabricated GGS device is set by iterative narrow-width electric pulses, it first experiences an abrupt resistance drop by two orders of magnitude, followed by a continuous resistance decrease. This unique abrupt-to-progressive transition can be used to mimic both neuronal and synaptic functions, mechanistically enabled by the formation of conductive channels and the continuous growth with the phase separation of crystalline areas. To this end, we propose an all-PCM SNN, which is emulated to have high accuracy (90%) in the standard pattern recognition.
发布期刊链接:https://link.springer.com/article/10.1007/s40843-022-2283-9#author-information