吴娟

论文成果

Bayesian nonparametric estimation of a copula

发布时间:2018-09-29  点击次数:
论文类型:期刊论文 论文编号:000344384800009 第一作者:Juan Wu 通讯作者:Juan Wu 合写作者:Xue Wang,Stephen G. Walker 发表刊物:Journal of Statistical Computation and Simulation 收录刊物:SCI 所属单位:Huazhong University of Science and Technology 刊物所在地:UK 学科门类:理学 一级学科:统计学 文献类型:J 卷号:1 期号:85 页面范围:103-116 ISSN号:0094-9655 关键字:Bayesian nonparametric estimation; copula; Gaussian copula; Gibbs sampling; slice sampling 发表时间:2015-04-01 摘要:Acopula can fully characterize the dependence of multiple variables. The purpose of this paper is to provide a Bayesian nonparametric approach to the estimation of a copula, and we do this by mixing over a class of parametric copulas. In particular, we show that any bivariate copula density can be arbitrarily accurately approximated by an infinite mixture of Gaussian copula density functions. The model can be estimated by Markov Chain Monte Carlo methods and the model is demonstrated on both simulated and real data sets. 发布期刊链接:http://dx.doi.org/10.1080/00949655.2013.806508