吴娟

论文成果

Bayesian nonparametric inference for a multivariate copula function

发布时间:2018-09-29  点击次数:
论文类型:期刊论文 论文编号:62H12 第一作者:Juan Wu 通讯作者:Juan Wu 合写作者:Xue Wang,Stephen G. Walker 发表刊物:Methodology and Computing in Applied Probability 收录刊物:SCI 所属单位:Huazhong University of Science and Technology 学科门类:理学 一级学科:统计学 文献类型:J 卷号:3 期号:16 页面范围:747-763 ISSN号:1387-5841 发表时间:2014-09-29 摘要:The paper presents a general Bayesian nonparametric approach for estimating a high dimensional copula. We first introduce the skew–normal copula, which we then extend to an infinite mixture model. The skew–normal copula fixes some limitations in the Gaussian copula. An MCMC algorithm is developed to draw samples from the correct posterior distribution and the model is investigated using both simulated and real applications.