王兴刚

个人信息Personal Information

教授   博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:电子信息与通信学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:华中科技大学

学科:通信与信息系统
信号与信息处理

Weakly-supervised Instance Segmentation via Class-agnostic Learning with Salient Images

点击次数:

论文类型:会议论文

第一作者:Wang,Xinggang

通讯作者:Liu,Wenyu

合写作者:Chen,Xiaoxin,Ran,Longjin,Ding,Qi,Hu,Bin,Feng,Jiapei

发表刊物:2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

摘要:Humans have a strong class-agnostic object segmentation ability and can outline boundaries of unknown objects precisely, which motivates us to propose a box-supervised class-agnostic object segmentation (BoxCaseg) based solution for weakly-supervised instance segmentation. The BoxCaseg model is jointly trained using box-supervised images and salient images in a multi-task learning manner. The fine-annotated salient images provide class-agnostic and precise object localization guidance for box-supervised images. The object masks predicted by a pretrained BoxCaseg model are refined via a novel merged and dropped strategy as proxy ground truth to train a Mask R-CNN for weakly-supervised instance segmentation. Only using 7991 salient images, the weakly-supervised Mask R-CNN is on par with fully-supervised Mask R-CNN on PASCAL VOC and significantly outperforms previous state-of-the-art boxsupervised instance segmentation methods on COCO. The source code, pretrained models and datasets are available at https://github.com/hustvl/BoxCaseg.