王兴刚
论文成果
当前位置: 王兴刚-华中科技大学教师主页 >> 科学研究 >> 论文成果- Wang,Xinggang,Wang,Xinggang,Latecki,Jan,Longin,Liu,Wenyu,Bai,Xiang.Wang,Xinggang.Feature Context for Image Classification and Object Detection.2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2011,
- Wang,Xinggang,Wang,Xinggang,Latecki,Jan,Longin,Liu,Wenyu,Yang,Xingwei,Bai,Xiang.Wang,Xinggang.Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning.Advances in Neural Information Processing Systems 24 (NIPS 2011),2011,
- Wang,Xinggang,Wang,Xinggang,Latecki,Jan,Longin,Liu,Wenyu,Ma,Tianyang,Bai,Xiang.Wang,Xinggang.Fan Shape Model for Object Detection.2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2012,
- Wang,Xinggang,Wang,Xinggang,Wang,Tu,Zhuowen,Liu,Wenyu,Bai,Xiang,Wang,Baoyuan.Wang,Xinggang.Max-margin multiple-instance dictionary learning.International Conference on Machine Learning (ICML), Atlanta, June, 2013,2013,
- Wang,Xinggang,Latecki,Jan,Longin,Liu,Wenyu,Bai,Xiang.Feng,Bin.Bag of contour fragments for robust shape classification.Pattern Recognition,2014,
- Shen,Wei,Zhang,Zhijiang,Yan,Wang,Xinggang.Bai,Xiang.DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection.2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015,
- Zhu,Zhuotun,Wang,Xinggang,Yao,Cong.Bai,Xiang.Relaxed Multiple-Instance SVM with Application to Object Discovery.2015 IEEE International Conference on Computer Vision (ICCV),2015,
- Tang,Peng,Bai,Xiang,Wang,Xinggang.Liu,Wenyu.Multiple Instance Detection Network with Online Instance Classifier Refinement.2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2017,
- Wang,Xinggang,Wang,Xinggang,Liu,Wenyu,Tang,Peng,Yan,Yongluan.Wang,Xinggang,Bai,Xiang.Revisiting multiple instance neural networks.Pattern Recognition,2017,
- Huang,Zilong,Wang,Jingdong,Liu,Wenyu,Wang,Jiasi.Wang,Wang,Xinggang.Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2018,