尹慧
个人信息
Personal information
副教授 硕士生导师
性别:女
在职信息:在职
所在单位:数学与统计学院
学历:研究生(博士)毕业
学位:理学博士学位
毕业院校:中国科学院武汉物理与数学研究所
- [1] Zhu, Chang Jiang; Zhang, Zhi Yong; Yin, Hui. Convergence to diffusion waves for nonlinear evolution equations with ellipticity and damping, and with different end states. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 5, 1357–1370. .
- [2] Jiayi, Hu; Hui, Yin. Separation of variables solutions of nonlinear reaction-diffusion systems. J. Phys. A 40 (2007), no. 13, 3389–3398. .
- [3] Qian, Jianzhen; Yin, Hui. On the stationary solutions of the full compressible Navier-Stokes equations and its stability with respect to initial disturbance. J. Differential Equations 237 (2007), no. 1, 225–256. .
- [4] Fan, Lili; Yin, Hui; Zhao, Huijiang. Decay rates toward stationary waves of solutions for damped wave equations. J. Partial Differential Equations 21 (2008), no. 2, 141–172. .
- [5] Yin, Hui; Chen, Shuyue; Jin, Jing. Convergence rate to traveling waves for generalized Benjamin-Bona-Mahony-Burgers equations. Z. Angew. Math. Phys. 59 (2008), no. 6, 969–1001..
- [6] Yin, Hui; Zhao, Huijiang; Kim, Jongsung. Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space. J. Differential Equations 245 (2008), no. 11, 3144–3216. .
- [7] Ma, Xuan; Yin, Hui; Jing, Jin. Global asymptotics toward the rarefaction waves for a parabolic-elliptic system related to the Camassa-Holm shallow water equation. Acta Math. Sci. Ser. B (Engl. Ed.) 29 (2009), no. 2, 371–390. .
- [8] Yin, Hui; Zhao, Huijiang. Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space. Kinet. Relat. Models 2 (2009), no. 3, 521–550. .
- [9] Yin, Hui; Zhao, Huijiang; Zhou, Lina. Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-de Vries-Burgers equations. Nonlinear Anal. 71 (2009), no. 9, 3981–3991..
- [10] Qian, Jianzhen; Yin, Hui. Convergence rates for the compressible Navier-Stokes equations with general forces. Acta Math. Sci. Ser. B (Engl. Ed.) 29 (2009), no. 5, 1351–1365. .