王超

个人信息Personal Information

研究员(自然科学)   博士生导师   硕士生导师  

性别:男

在职信息:在职

所在单位:光学与电子信息学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:南洋理工大学

学科:微电子学与固体电子学
电路与系统

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

An Energy-efficient Multi-core Restricted Boltzmann Machine Processor with On-chip Bio-plausible Learning and Reconfigurable Sparsity

点击次数:

第一作者:Jiajun Wu

通讯作者:C. Wang

合写作者:X. Huang, L. Yang, L. Wang, J. Wang, Z. Liu, K. S. Chong, S. W. Lin

发表刊物:IEEE Asian Solid State Circuit Conference (A-SSCC 2020)

收录刊物:EI

文献类型:C

DOI码:10.1109/A-SSCC48613.2020.9336135

发表时间:2020-11-09

摘要:This paper proposes an energy-efficient multi-core processor design of restricted Boltzmann machine (RBM) with on-chip learning and reconfigurable sparsity. Inspired by bio-plausible variational probability flow (VPF) algorithm, our design significantly reduces the on-chip learning time and associated computation/energy as compared to conventional methods. The multi-core design with reconfigurable sparse weight connections further efficiently and flexibly reduces the required computation time and energy. FPGA implementation shows that the proposed design achieves 63.14 pJ per NW (neural weight) and 9.77 GNWs/s (neural weight update per second) at 128 MHz, which outperforms the baseline design by 44.0% and 24.3%, respectively.

发布期刊链接:https://ieeexplore.ieee.org/document/9336135