个人信息
Personal information
教授 博士生导师
所在单位:集成电路学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:华中科技大学
学科:微电子学与固体电子学曾获荣誉:
2024 华中科技大学青年五四奖章
2022 华为奥林帕斯先锋奖
2020 湖北省技术发明一等奖(排名第2)
2013 湖北省年度“十大科技事件”
2013 湖北省优秀博士学位论文
2014 湖北省优秀学士学位论文指导教师
2015 华中科技大学教师教学竞赛二等奖
2017 华中科技大学光学与电子信息学院“我最喜爱的教师班主任“
2020 华中科技大学光学与电子信息学院突出贡献一等奖
论文类型:期刊论文
第一作者:赵锐哲,李鑫
通讯作者:童浩,缪向水
合写作者:缪向水
发表刊物:Applied Physics Letters
所属单位:华中科技大学
学科门类:工学
一级学科:电子科学与技术
文献类型:J
卷号:123
期号:3
页面范围:033503
关键字:Telecommunication networks, Electrical circuits, Convolutional neural network, Artificial neural networks, Phase change memories, Optical imaging, Amorphous materials, Scanning electron microscopy, Nanoribbons, Chemical processes
DOI码:10.1063/5.0154995
发表时间:4512-05-01
摘要:Phase change memory (PCM) is one of the most mature technologies for non-von Neumann computing. However, abrupt amorphization becomes a barrier for training artificial neural networks, due to limitations of the inherent operational mechanism of phase change materials. The devices can achieve a gradual conductance change in the crystallization process, while the conductance change for amorphization process is much more abrupt. This work presents a possible explanation for the RESET abrupt change issue in T-shaped devices, based on the analysis of the volume and connectivity of the amorphous and crystalline regions. Using this model, a nanoribbon device for analog PCM targeting neural network applications is designed, fabricated, and characterized. The designed device can realize a gradual RESET without changing the amplitude and width of RESET pulses. Using a nanoribbon device as a single synapse in the designed array reduces the number of SET operations needed to achieve the same accuracy in convolutional neural network simulation by 75%, which implies a significant reduction in power and time consumption. This work provides an effective way to implement gradual RESET for PCM devices.
发布期刊链接:https://pubs.aip.org/aip/apl/article/123/3/033503/2903061/A-nanoribbon-device-for-analog-phase-change-memory