童浩

个人信息

Personal information

教授     博士生导师    

所在单位:集成电路学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:华中科技大学

学科:微电子学与固体电子学
曾获荣誉:
2024    华中科技大学青年五四奖章
2022    华为奥林帕斯先锋奖
2020    湖北省技术发明一等奖(排名第2)
2013    湖北省年度“十大科技事件”
2013    湖北省优秀博士学位论文
2014    湖北省优秀学士学位论文指导教师
2015    华中科技大学教师教学竞赛二等奖
2017    华中科技大学光学与电子信息学院“我最喜爱的教师班主任“
2020    华中科技大学光学与电子信息学院突出贡献一等奖

Ultra-Low Power Consumption and Favorable Reliability Mn-Doped Bifeo3 Resistance-Switching Devices Via Tunable Oxygen Vacancy
发布时间:2023-08-21  点击次数:

论文类型:期刊论文
第一作者:赵雨薇
通讯作者:缪向水
合写作者:鄢俊兵,孙华军,童浩,程伟明,程敏,程乐乐,苏睿
发表刊物:Ceramics International
所属单位:华中科技大学
学科门类:工学
一级学科:电子科学与技术
文献类型:J
卷号:49
期号:6
页面范围:9090-9096
关键字:BiFeO3 ;Mn掺杂;电阻切换;功耗;氧空位
DOI码:10.1016/j.ceramint.2022.11.066
发表时间:4476-03-01
摘要:Due to the instability of Fe valence and the existence of a large number of oxygen vacancies in BFO films, a large leakage current and comparatively low resistance value usually appear in BFO based devices and high operating voltage and power consumption are demanded to form regular oxygen vacancy conductive channels, which restricts the application of BFO in resistive memory and memristor devices. In this paper, a series of Pt/BiFe 1-x Mn x O 3 /TiN (BFMO, x=0, 0.05, 0.1, 0.15, 0.2) devices with different Mn doping concentrations were prepared by magnetron sputtering and lithography, and the microstructure and electrical characteristics of BFMO-based devices were investigated. As the amount of Mn doping increases, the resistive switching properties including operating voltage, power consumption, cycle stability, and retention of BFMO device first improve and then degrade. Interestingly, with the increase of Mn doping concentrations, the ratio of Fe 2+ to Fe 3+ and oxygen vacancies to lattice oxygen in BFMO devices analyzed by X-ray photoelectron spectroscopy initially diminishes reaching the minimum and then rises. Notably, BiFe 0.9 Mn 0.1 O 3 device presents low DC operating voltage of -0.7 V and 0.8 V, preferable endurance of 10 4 pulse cycles, and low power consumption of only 0.45 pJ in a single set process. The remarkable electrical performance in BFMO-based devices is likely originated from the inhibition of initial oxygen vacancies caused by Mn doping with appropriate content.
发布期刊链接:https://www.sciencedirect.com/science/article/pii/S0272884222040482?via%3Dihub