童浩

个人信息

Personal information

教授     博士生导师    

所在单位:集成电路学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:华中科技大学

学科:微电子学与固体电子学
曾获荣誉:
2024    华中科技大学青年五四奖章
2022    华为奥林帕斯先锋奖
2020    湖北省技术发明一等奖(排名第2)
2013    湖北省年度“十大科技事件”
2013    湖北省优秀博士学位论文
2014    湖北省优秀学士学位论文指导教师
2015    华中科技大学教师教学竞赛二等奖
2017    华中科技大学光学与电子信息学院“我最喜爱的教师班主任“
2020    华中科技大学光学与电子信息学院突出贡献一等奖

Controlled Memory and Threshold Switching Behaviors in a Heterogeneous Memristor for Neuromorphic Computing
发布时间:2023-08-21  点击次数:

论文类型:期刊论文
第一作者:袁俊辉,黄晓弟,李灏阳
通讯作者:缪向水
合写作者:薛堪豪,何毓辉,童浩,李祎,万天晴,卢一帆
发表刊物:Advanced Electronic Materials
所属单位:华中科技大学
学科门类:工学
一级学科:电子科学与技术
文献类型:J
卷号:6
期号:8
页面范围:2000309
关键字:conductive filaments memory switching memristors neuromorphic computing threshold switching
DOI码:10.1002/aelm.202000309
发表时间:4402-07-01
摘要:The fully memristive neural network is emerging as a game-changer in the artificial intelligence competition. Artificial synapses and neurons, as two fundamental elements for hardware neural networks, have been substantially implemented by different devices with memory and threshold switching (TS) behaviors, respectively. However, obtaining controllable memory and TS behaviors in the same memristive material system is still a considerable challenge that holds great potential for realizing compatible artificial neurons and synapses. Here, a heterogeneous bilayer conductive filamentary memristor comprising two different electrolytes with distinct copper ion mobility is reported: Cu/GeTe/Al2O3/Pt, which can demonstrate the governance of switching types. Experimentally, when the thickness of the Al2O3 layer is 3 nm, stable nonvolatile multilevel memory switching (MS) is observed and employed to mimic the synaptic plasticity. With increasing oxide thickness, the switching behavior under the same compliance current alters from MS to volatile TS and is used to emulate the integrate-and-fire neuron function. The controllable switching stems from the change in the metal filament morphology within the Al2O3 layer, which is supported by ab initio calculation results. This method enables a new pathway for constructing functionally reconfigurable neuromorphic devices for intelligence neuromorphic systems.
发布期刊链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.202000309