孙华军

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:集成电路学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:中国科学院上海光机所

学科:微电子学与固体电子学
曾获荣誉:
2022    Wiley中国开放科学高贡献作者
2019    2019年北京市技术发明一等奖
2018    2018校级创新创业优秀指导老师
2017    Lam Research微电子论文奖1次
2017    指导的研究生获得国家奖学金3人次
2020    2017,2018,2020年获得校级优秀教师班主任3次

Ultra-Low Power Consumption and Favorable Reliability Mn-Doped Bifeo3 Resistance-Switching Devices Via Tunable Oxygen Vacancy
发布时间:2023-08-21  点击次数:

论文类型:期刊论文
第一作者:赵雨薇
通讯作者:缪向水
合写作者:鄢俊兵,孙华军,童浩,程伟明,程敏,程乐乐,苏睿
发表刊物:Ceramics International
所属单位:华中科技大学
学科门类:工学
一级学科:电子科学与技术
文献类型:J
卷号:49
期号:6
页面范围:9090-9096
关键字:BiFeO3 ;Mn掺杂;电阻切换;功耗;氧空位
DOI码:10.1016/j.ceramint.2022.11.066
发表时间:4476-03-01
摘要:Due to the instability of Fe valence and the existence of a large number of oxygen vacancies in BFO films, a large leakage current and comparatively low resistance value usually appear in BFO based devices and high operating voltage and power consumption are demanded to form regular oxygen vacancy conductive channels, which restricts the application of BFO in resistive memory and memristor devices. In this paper, a series of Pt/BiFe 1-x Mn x O 3 /TiN (BFMO, x=0, 0.05, 0.1, 0.15, 0.2) devices with different Mn doping concentrations were prepared by magnetron sputtering and lithography, and the microstructure and electrical characteristics of BFMO-based devices were investigated. As the amount of Mn doping increases, the resistive switching properties including operating voltage, power consumption, cycle stability, and retention of BFMO device first improve and then degrade. Interestingly, with the increase of Mn doping concentrations, the ratio of Fe 2+ to Fe 3+ and oxygen vacancies to lattice oxygen in BFMO devices analyzed by X-ray photoelectron spectroscopy initially diminishes reaching the minimum and then rises. Notably, BiFe 0.9 Mn 0.1 O 3 device presents low DC operating voltage of -0.7 V and 0.8 V, preferable endurance of 10 4 pulse cycles, and low power consumption of only 0.45 pJ in a single set process. The remarkable electrical performance in BFMO-based devices is likely originated from the inhibition of initial oxygen vacancies caused by Mn doping with appropriate content.
发布期刊链接:https://www.sciencedirect.com/science/article/pii/S0272884222040482?via%3Dihub